Rough Entropy Clustering Algorithm in Image Segmentation

Author(s):  
Dariusz Malyszko ◽  
Jaroslaw Stepaniuk

Clustering understood as a data grouping technique represents fundamental procedures in image processing. The present chapter’s concerns are combining the concept of rough sets and entropy measures in the area of image segmentation. In this context, comprehensive investigations into rough set entropy based clustering image segmentation techniques have been performed. Segmentation presents low-level image transformation routines concerned with image partitioning into distinct disjoint and homogenous regions. In the area of segmentation routines, threshold based algorithms and clustering algorithms most often are applied in practical solutions when there is a pressing need for simplicity and robustness. Rough entropy threshold based segmentation algorithms simultaneously combine optimal threshold determination with rough region approximations and region entropy measures. In the present chapter, new algorithmic schemes RECA in the area of rough entropy based partitioning routines have been proposed. Rough entropy clustering incorporates the notion of rough entropy into clustering models, taking advantage of dealing with some degree of uncertainty in analyzed data. RECA algorithmic schemes performed usually equally robust compared to standard k-means algorithms. At the same time, in many runs they yielded slightly better performances making possible future implementation in clustering applications.

2020 ◽  
Vol 17 (5) ◽  
pp. 2014-2020
Author(s):  
S. Agnes Shifani ◽  
G. Ramkumar ◽  
V. Nanammal ◽  
R. Thandaiah Prabu

A gainful fuzzy k-means clustering algorithm under Morphological Image Processing (MIP) is performed. Image processing is one of quickly developing examination territory nowadays and now it is particularly coordinated with all identified with science field. Image Processing can be utilized for breaking down various restorative and MRI Image to get the uncommon and anomaly in the image. Image segmentation manages segmentation of vein segmentation algorithm utilizing fundus Image. In this task, this segmentation is done utilizing k-means clustering and c-means clustering algorithm and Morphological operator for better execution. This upgrades the vein variations from the norm progressively and in a moderately brief time when contrasted with numerous other clustering algorithms.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 610 ◽  
Author(s):  
Senquan Yang ◽  
Pu Li ◽  
HaoXiang Wen ◽  
Yuan Xie ◽  
Zhaoshui He

Color image segmentation is very important in the field of image processing as it is commonly used for image semantic recognition, image searching, video surveillance or other applications. Although clustering algorithms have been successfully applied for image segmentation, conventional clustering algorithms such as K-means clustering algorithms are not sufficiently robust to illumination changes, which is common in real-world environments. Motivated by the observation that the RGB value distributions of the same color under different illuminations are located in an identical hyperline, we formulate color classification as a hyperline clustering problem. We then propose a K-hyperline clustering algorithm-based color image segmentation approach. Experiments on both synthetic and real images demonstrate the outstanding performance and robustness of the proposed algorithm as compared to existing clustering algorithms.


Author(s):  
R. R. Gharieb ◽  
G. Gendy ◽  
H. Selim

In this paper, the standard hard C-means (HCM) clustering approach to image segmentation is modified by incorporating weighted membership Kullback–Leibler (KL) divergence and local data information into the HCM objective function. The membership KL divergence, used for fuzzification, measures the proximity between each cluster membership function of a pixel and the locally-smoothed value of the membership in the pixel vicinity. The fuzzification weight is a function of the pixel to cluster-centers distances. The used pixel to a cluster-center distance is composed of the original pixel data distance plus a fraction of the distance generated from the locally-smoothed pixel data. It is shown that the obtained membership function of a pixel is proportional to the locally-smoothed membership function of this pixel multiplied by an exponentially distributed function of the minus pixel distance relative to the minimum distance provided by the nearest cluster-center to the pixel. Therefore, since incorporating the locally-smoothed membership and data information in addition to the relative distance, which is more tolerant to additive noise than the absolute distance, the proposed algorithm has a threefold noise-handling process. The presented algorithm, named local data and membership KL divergence based fuzzy C-means (LDMKLFCM), is tested by synthetic and real-world noisy images and its results are compared with those of several FCM-based clustering algorithms.


2014 ◽  
Vol 1 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Payel Roy ◽  
Srijan Goswami ◽  
Sayan Chakraborty ◽  
Ahmad Taher Azar ◽  
Nilanjan Dey

In the domain of image processing, image segmentation has become one of the key application that is involved in most of the image based operations. Image segmentation refers to the process of breaking or partitioning any image. Although, like several image processing operations, image segmentation also faces some problems and issues when segmenting process becomes much more complicated. Previously lot of work has proved that Rough-set theory can be a useful method to overcome such complications during image segmentation. The Rough-set theory helps in very fast convergence and in avoiding local minima problem, thereby enhancing the performance of the EM, better result can be achieved. During rough-set-theoretic rule generation, each band is individualized by using the fuzzy-correlation-based gray-level thresholding. Therefore, use of Rough-set in image segmentation can be very useful. In this paper, a summary of all previous Rough-set based image segmentation methods are described in detail and also categorized accordingly. Rough-set based image segmentation provides a stable and better framework for image segmentation.


Author(s):  
B.K. Tripathy ◽  
Adhir Ghosh

Developing Data Clustering algorithms have been pursued by researchers since the introduction of k-means algorithm (Macqueen 1967; Lloyd 1982). These algorithms were subsequently modified to handle categorical data. In order to handle the situations where objects can have memberships in multiple clusters, fuzzy clustering and rough clustering methods were introduced (Lingras et al 2003, 2004a). There are many extensions of these initial algorithms (Lingras et al 2004b; Lingras 2007; Mitra 2004; Peters 2006, 2007). The MMR algorithm (Parmar et al 2007), its extensions (Tripathy et al 2009, 2011a, 2011b) and the MADE algorithm (Herawan et al 2010) use rough set techniques for clustering. In this chapter, the authors focus on rough set based clustering algorithms and provide a comparative study of all the fuzzy set based and rough set based clustering algorithms in terms of their efficiency. They also present problems for future studies in the direction of the topics covered.


Author(s):  
Zhongming Luo ◽  
Yu Zhang ◽  
Zixuan Zhou ◽  
Xuan Bi ◽  
Haibin Wu ◽  
...  

To address problems relating to microscopic micro-vessel images of living bodies, including poor vessel continuity, blurry boundaries between vessel edges and tissue and uneven field illuminance, and this paper put forward a fuzzy-clustering level-set segmentation algorithm. By this method, pre-treated micro-vessel images were segmented by the fuzzy c-means (FCM) clustering algorithm to obtain original contours of interesting areas in images. By the evolution equations of the improved level set function, accurate segmentation of microscopic micro-vessel images was realized. This method can effectively solve the problem of manual initialization of contours, avoid the sensitivity to initialization and improve the accuracy of level-set segmentation. The experiment results indicate that compared with traditional micro-vessel image segmentation algorithms, this algorithm is of high efficiency, good noise immunity and accurate image segmentation.


Author(s):  
Hui Du ◽  
Yuping Wang ◽  
Xiaopan Dong

Clustering is a popular and effective method for image segmentation. However, existing cluster methods often suffer the following problems: (1) Need a huge space and a lot of computation when the input data are large. (2) Need to assign some parameters (e.g. number of clusters) in advance which will affect the clustering results greatly. To save the space and computation, reduce the sensitivity of the parameters, and improve the effectiveness and efficiency of the clustering algorithms, we construct a new clustering algorithm for image segmentation. The new algorithm consists of two phases: coarsening clustering and exact clustering. First, we use Affinity Propagation (AP) algorithm for coarsening. Specifically, in order to save the space and computational cost, we only compute the similarity between each point and its t nearest neighbors, and get a condensed similarity matrix (with only t columns, where t << N and N is the number of data points). Second, to further improve the efficiency and effectiveness of the proposed algorithm, the Self-tuning Spectral Clustering (SSC) is used to the resulted points (the representative points gotten in the first phase) to do the exact clustering. As a result, the proposed algorithm can quickly and precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the compared algorithms FCM, K-means and SOM.


2021 ◽  
Author(s):  
Lujia Lei ◽  
Chengmao Wu ◽  
Xiaoping Tian

Abstract Clustering algorithms with deep neural network have attracted wide attention of scholars. A deep fuzzy K-means clustering algorithm model with adaptive loss function and entropy regularization (DFKM) is proposed by combining automatic encoder and clustering algorithm. Although it introduces adaptive loss function and entropy regularization to improve the robustness of the model, its segmentation effect is not ideal for high noise; At the same time, its model does not use a convolutional auto-encoder, which is not suitable for high-dimensional images.Therefore, on the basis of DFKM, this paper focus on image segmentation, combine neighborhood median and mean information of current pixel, introduce neighborhood information of membership degree, and extend Euclidean distance to kernel space by using kernel function, propose a dual-neighborhood information constrained deep fuzzy clustering based on kernel function (KDFKMS). A large number of experimental results show that compared with DFKM and classical image segmentation algorithms, this algorithm has stronger anti-noise robustness.


Author(s):  
Abahan Sarkar ◽  
Ram Kumar

In day-to-day life, new technologies are emerging in the field of Image processing, especially in the domain of segmentation. Image segmentation is the most important part in digital image processing. Segmentation is nothing but a portion of any image and object. In image segmentation, the digital image is divided into multiple set of pixels. Image segmentation is generally required to cut out region of interest (ROI) from an image. Currently there are many different algorithms available for image segmentation. This chapter presents a brief outline of some of the most common segmentation techniques (e.g. Segmentation based on thresholding, Model based segmentation, Segmentation based on edge detection, Segmentation based on clustering, etc.,) mentioning its advantages as well as the drawbacks. The Matlab simulated results of different available image segmentation techniques are also given for better understanding of image segmentation. Simply, different image segmentation algorithms with their prospects are reviewed in this chapter to reduce the time of literature survey of the future researchers.


2012 ◽  
Vol 459 ◽  
pp. 128-131
Author(s):  
Xue Feng Hou ◽  
Yuan Yuan Shang

Image segmentation is one focus of digital image processing. In this paper, fourteen different kinds of classical image segmentation algorithms are studied and compared using corn image and simulating in MATLAB based on HSI color model. The result reveals that the method that using H component based on HSI color model to deal with the histogram threshold algorithm and Laplace edge detection algorithm is effectively extract the plant from the corn image


Sign in / Sign up

Export Citation Format

Share Document