scholarly journals Zero-Shot Feature Selection via Transferring Supervised Knowledge

2021 ◽  
Vol 17 (2) ◽  
pp. 1-20
Author(s):  
Zheng Wang ◽  
Qiao Wang ◽  
Tingzhang Zhao ◽  
Chaokun Wang ◽  
Xiaojun Ye

Feature selection, an effective technique for dimensionality reduction, plays an important role in many machine learning systems. Supervised knowledge can significantly improve the performance. However, faced with the rapid growth of newly emerging concepts, existing supervised methods might easily suffer from the scarcity and validity of labeled data for training. In this paper, the authors study the problem of zero-shot feature selection (i.e., building a feature selection model that generalizes well to “unseen” concepts with limited training data of “seen” concepts). Specifically, they adopt class-semantic descriptions (i.e., attributes) as supervision for feature selection, so as to utilize the supervised knowledge transferred from the seen concepts. For more reliable discriminative features, they further propose the center-characteristic loss which encourages the selected features to capture the central characteristics of seen concepts. Extensive experiments conducted on various real-world datasets demonstrate the effectiveness of the method.

2017 ◽  
Vol 27 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Marton Szemenyei ◽  
Ferenc Vajda

Abstract Dimension reduction and feature selection are fundamental tools for machine learning and data mining. Most existing methods, however, assume that objects are represented by a single vectorial descriptor. In reality, some description methods assign unordered sets or graphs of vectors to a single object, where each vector is assumed to have the same number of dimensions, but is drawn from a different probability distribution. Moreover, some applications (such as pose estimation) may require the recognition of individual vectors (nodes) of an object. In such cases it is essential that the nodes within a single object remain distinguishable after dimension reduction. In this paper we propose new discriminant analysis methods that are able to satisfy two criteria at the same time: separating between classes and between the nodes of an object instance. We analyze and evaluate our methods on several different synthetic and real-world datasets.


2019 ◽  
Vol 2019 (1) ◽  
pp. 26-46 ◽  
Author(s):  
Thee Chanyaswad ◽  
Changchang Liu ◽  
Prateek Mittal

Abstract A key challenge facing the design of differential privacy in the non-interactive setting is to maintain the utility of the released data. To overcome this challenge, we utilize the Diaconis-Freedman-Meckes (DFM) effect, which states that most projections of high-dimensional data are nearly Gaussian. Hence, we propose the RON-Gauss model that leverages the novel combination of dimensionality reduction via random orthonormal (RON) projection and the Gaussian generative model for synthesizing differentially-private data. We analyze how RON-Gauss benefits from the DFM effect, and present multiple algorithms for a range of machine learning applications, including both unsupervised and supervised learning. Furthermore, we rigorously prove that (a) our algorithms satisfy the strong ɛ-differential privacy guarantee, and (b) RON projection can lower the level of perturbation required for differential privacy. Finally, we illustrate the effectiveness of RON-Gauss under three common machine learning applications – clustering, classification, and regression – on three large real-world datasets. Our empirical results show that (a) RON-Gauss outperforms previous approaches by up to an order of magnitude, and (b) loss in utility compared to the non-private real data is small. Thus, RON-Gauss can serve as a key enabler for real-world deployment of privacy-preserving data release.


2021 ◽  
Vol 22 (1) ◽  
pp. 53-66
Author(s):  
D. Anand Joseph Daniel ◽  
M. Janaki Meena

Sentiment analysis of online product reviews has become a mainstream way for businesses on e-commerce platforms to promote their products and improve user satisfaction. Hence, it is necessary to construct an automatic sentiment analyser for automatic identification of sentiment polarity of the online product reviews. Traditional lexicon-based approaches used for sentiment analysis suffered from several accuracy issues while machine learning techniques require labelled training data. This paper introduces a hybrid sentiment analysis framework to bond the gap between both machine learning and lexicon-based approaches. A novel tunicate swarm algorithm (TSA) based feature reduction is integrated with the proposed hybrid method to solve the scalability issue that arises due to a large feature set. It reduces the feature set size to 43% without changing the accuracy (93%). Besides, it improves the scalability, reduces the computation time and enhances the overall performance of the proposed framework. From experimental analysis, it can be observed that TSA outperforms existing feature selection techniques such as particle swarm optimization and genetic algorithm. Moreover, the proposed approach is analysed with performance metrics such as recall, precision, F1-score, feature size and computation time.


2021 ◽  
Vol 14 (6) ◽  
pp. 997-1005
Author(s):  
Sandeep Tata ◽  
Navneet Potti ◽  
James B. Wendt ◽  
Lauro Beltrão Costa ◽  
Marc Najork ◽  
...  

Extracting structured information from templatic documents is an important problem with the potential to automate many real-world business workflows such as payment, procurement, and payroll. The core challenge is that such documents can be laid out in virtually infinitely different ways. A good solution to this problem is one that generalizes well not only to known templates such as invoices from a known vendor, but also to unseen ones. We developed a system called Glean to tackle this problem. Given a target schema for a document type and some labeled documents of that type, Glean uses machine learning to automatically extract structured information from other documents of that type. In this paper, we describe the overall architecture of Glean, and discuss three key data management challenges : 1) managing the quality of ground truth data, 2) generating training data for the machine learning model using labeled documents, and 3) building tools that help a developer rapidly build and improve a model for a given document type. Through empirical studies on a real-world dataset, we show that these data management techniques allow us to train a model that is over 5 F1 points better than the exact same model architecture without the techniques we describe. We argue that for such information-extraction problems, designing abstractions that carefully manage the training data is at least as important as choosing a good model architecture.


2021 ◽  
Author(s):  
Rudy Venguswamy ◽  
Mike Levy ◽  
Anirudh Koul ◽  
Satyarth Praveen ◽  
Tarun Narayanan ◽  
...  

<p>Machine learning modeling for Earth events at NASA is often limited by the availability of labeled examples. For example, training classifiers for forest fires or oil spills from satellite imagery requires curating a massive and diverse dataset of example forest fires, a tedious multi-month effort requiring careful review of over 196.9 million square miles of data per day for 20 years. While such images might exist in abundance within 40 petabytes of unlabeled satellite data, finding these positive examples to include in a training dataset for a machine learning model is extremely time-consuming and requires researchers to "hunt" for positive examples, like finding a needle in a haystack. </p><p>We present a no-code open-source tool, Curator, whose goal is to minimize the amount of human manual image labeling needed to achieve a state of the art classifier. The pipeline, purpose-built to take advantage of the massive amount of unlabeled images, consists of (1) self-supervision training to convert unlabeled images into meaningful representations, (2) search-by-example to collect a seed set of images, (3) human-in-the-loop active learning to iteratively ask for labels on uncertain examples and train on them. </p><p>In step 1, a model capable of representing unlabeled images meaningfully is trained with a self-supervised algorithm (like SimCLR) on a random subset of the dataset (that conforms to researchers’ specified “training budget.”). Since real-world datasets are often imbalanced leading to suboptimal models, the initial model is used to generate embeddings on the entire dataset. Then, images with equidistant embeddings are sampled. This iterative training and resampling strategy improves both balanced training data and models every iteration. In step 2, researchers supply an example image of interest, and the output embeddings generated from this image are used to find other images with embeddings near the reference image’s embedding in euclidean space (hence similar looking images to the query image). These proposed candidate images contain a higher density of positive examples and are annotated manually as a seed set. In step 3, the seed labels are used to train a classifier to identify more candidate images for human inspection with active learning. Each classification training loop, candidate images for labeling are sampled from the larger unlabeled dataset based on the images that the model is most uncertain about (p ≈ 0.5).</p><p>Curator is released as an open-source package built on PyTorch-Lightning. The pipeline uses GPU-based transforms from the NVIDIA-Dali package for augmentation, leading to a 5-10x speed up in self-supervised training and is run from the command line.</p><p>By iteratively training a self-supervised model and a classifier in tandem with human manual annotation, this pipeline is able to unearth more positive examples from severely imbalanced datasets which were previously untrainable with self-supervision algorithms. In applications such as detecting wildfires, atmospheric dust, or turning outward with telescopic surveys, increasing the number of positive candidates presented to humans for manual inspection increases the efficacy of classifiers and multiplies the efficiency of researchers’ data curation efforts.</p>


2020 ◽  
Vol 34 (01) ◽  
pp. 1153-1160 ◽  
Author(s):  
Xinshi Zang ◽  
Huaxiu Yao ◽  
Guanjie Zheng ◽  
Nan Xu ◽  
Kai Xu ◽  
...  

Using reinforcement learning for traffic signal control has attracted increasing interests recently. Various value-based reinforcement learning methods have been proposed to deal with this classical transportation problem and achieved better performances compared with traditional transportation methods. However, current reinforcement learning models rely on tremendous training data and computational resources, which may have bad consequences (e.g., traffic jams or accidents) in the real world. In traffic signal control, some algorithms have been proposed to empower quick learning from scratch, but little attention is paid to learning by transferring and reusing learned experience. In this paper, we propose a novel framework, named as MetaLight, to speed up the learning process in new scenarios by leveraging the knowledge learned from existing scenarios. MetaLight is a value-based meta-reinforcement learning workflow based on the representative gradient-based meta-learning algorithm (MAML), which includes periodically alternate individual-level adaptation and global-level adaptation. Moreover, MetaLight improves the-state-of-the-art reinforcement learning model FRAP in traffic signal control by optimizing its model structure and updating paradigm. The experiments on four real-world datasets show that our proposed MetaLight not only adapts more quickly and stably in new traffic scenarios, but also achieves better performance.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6661
Author(s):  
Lars Schmarje ◽  
Johannes Brünger ◽  
Monty Santarossa ◽  
Simon-Martin Schröder ◽  
Rainer Kiko ◽  
...  

Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures.


Author(s):  
Maria Mohammad Yousef ◽  

Generally, medical dataset classification has become one of the biggest problems in data mining research. Every database has a given number of features but it is observed that some of these features can be redundant and can be harmful as well as disrupt the process of classification and this problem is known as a high dimensionality problem. Dimensionality reduction in data preprocessing is critical for increasing the performance of machine learning algorithms. Besides the contribution of feature subset selection in dimensionality reduction gives a significant improvement in classification accuracy. In this paper, we proposed a new hybrid feature selection approach based on (GA assisted by KNN) to deal with issues of high dimensionality in biomedical data classification. The proposed method first applies the combination between GA and KNN for feature selection to find the optimal subset of features where the classification accuracy of the k-Nearest Neighbor (kNN) method is used as the fitness function for GA. After selecting the best-suggested subset of features, Support Vector Machine (SVM) are used as the classifiers. The proposed method experiments on five medical datasets of the UCI Machine Learning Repository. It is noted that the suggested technique performs admirably on these databases, achieving higher classification accuracy while using fewer features.


Author(s):  
Amalu Michael ◽  
Deepa S S

Diabetic retinopathy is one of the common forms of diabetic eye disease. DR occurs due to a high ratio of glucose in the blood, which causes alterations in the retinal vessels. Machine learning may be a broad multidisciplinary field that has its roots in statistics, algebra, data processing, and information analytics, etc. Machine learning is used to discover patterns from medical data and provide an efficient way to predict diseases.ML is an application of artificial intelligence it collects information from training data. There are several machine learning techniques are used for the diagnosis of diabetic retinopathy. This paper mainly focuses on the survey of such techniques and also various feature selection mechanisms. This study provides the basic categorization of feature selection techniques and discussing their use.


2021 ◽  
Author(s):  
Wyatt Hoffman

As states turn to AI to gain an edge in cyber competition, it will change the cat-and-mouse game between cyber attackers and defenders. Embracing machine learning systems for cyber defense could drive more aggressive and destabilizing engagements between states. Wyatt Hoffman writes that cyber competition already has the ingredients needed for escalation to real-world violence, even if these ingredients have yet to come together in the right conditions.


Sign in / Sign up

Export Citation Format

Share Document