Oil Consumption Forecasting in Turkey using Artificial Neural Network

2012 ◽  
Vol 1 (4) ◽  
pp. 89-105 ◽  
Author(s):  
Ebru Turanoglu ◽  
Ozlem Senvar ◽  
Cengiz Kahraman

Oil and energy markets have experienced dramatic changes over the past three decades. Due to these changes, it may be difficult to model and forecast the oil consumption with traditional methods such as regression. Artificial Neural Networks (ANNs) are the strong rival of regression and time series in forecasting. ANNs provide good accuracy along with more reliable and precise forecasting for policy makers, in this regard, ANNs can establish the foundation for oil consumption management by providing good model results. This paper tries to unfold the oil consumption forecasting in Turkey using ANN through some predetermined inputs, which is data for population, GDP, import and export of Turkey from 1965 to 2010, with the aim of finding the essential structure of the data to forecast future oil consumption in Turkey with less error.

2012 ◽  
Vol 628 ◽  
pp. 324-329
Author(s):  
F. García Fernández ◽  
L. García Esteban ◽  
P. de Palacios ◽  
A. García-Iruela ◽  
R. Cabedo Gallén

Artificial neural networks have become a powerful modeling tool. However, although they obtain an output with very good accuracy, they provide no information about the uncertainty of the network or its coverage intervals. This study describes the application of the Monte Carlo method to obtain the output uncertainty and coverage intervals of a particular type of artificial neural network: the multilayer perceptron.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mojtaba Bahmani ◽  
Mehdi Nejati ◽  
Amin GhasemiNejad ◽  
Fateme Nazari Robati ◽  
Mehrdad Lashkary ◽  
...  

In this paper, we develop a function of population, GDP, import, and export by applying a hybrid bat algorithm (BAT) and artificial neural network (ANN). We apply these methods to forecast oil consumption in Iran. For this purpose, an improved artificial neural network (ANN) structure, which is optimized by the BAT is proposed. The variables between 1980 and 2017 were used, partly for installing and testing the method. This method would be helpful in forecasting oil consumption and would provide a level playing field for checking the energy policy authority impacts on the structure of the energy sector in an economy such as Iran with high economic interventionism by the government. The result of the model shows that the findings are in close agreement with the observed data, and the performance of the method was excellent. We demonstrate that its efficiency could be a helpful and reliable tool for monitoring oil consumption.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Author(s):  
М.Е. Ушков ◽  
В.Л. Бурковский

Рассматривается структура системы информационной поддержки процессов принятия решений оператором АЭС в оперативных условиях. Анализируются функциональные возможности системы информационной поддержки оператора (СИПО) на примере Нововоронежской атомной электростанции (НВ АЭС). Данная система дает возможность оператору, управляющему распределенным комплексом технологических объектов АЭС, проводить качественный анализ и обработку больших объемов сложностpуктурированной информации и принимать своевременные адекватные решения в темпе реального времени. Кроме того, рассматривается объект управления и его структура, приводятся рекомендации, направленные на увеличение функциональных возможностей СИПО на базе искусственных нейронных сетей. Одной из многочисленных функций СИПО является прогнозирование состояния объекта управления на основе реализации программно-технологического комплекса модели энергоблока (ПТК МЭ). Однако существующая модель не способна учесть все факторы, влияющие на производственный процесс. Альтернативой здесь выступает искусственная нейронная сеть, которая в процессе обучения может сформировать искомые зависимости между большим числом параметров объекта управления и получить более полный и достоверный прогноз. Предложена структура искусственной нейронной сети на базе нечёткой системы вывода, которая реализует возможности нейронных сетей и нечеткой логики We considered the structure of the information support system for decision-making by the NPP operator in operational conditions. We analyzed the functional capabilities of the operator information support system (SIPO) using the example of the Novovoronezh nuclear power plant (NV NPP). This system provides the operator managing the distributed complex of NPP technological facilities to carry out high-quality analysis and processing of large volumes of complex structured information and make timely adequate decisions in real time. In addition, we considered the control object and its structure and made recommendations aimed at increasing the functionality of the SIPO based on artificial neural networks. One of the many functions of the SIPO is to predict the state of the control object based on the implementation of the software and technological complex of the power unit model. However, the existing model is not able to take into account all the factors influencing the production process. An alternative here is an artificial neural network, which in the learning process can form the required dependencies between a large number of parameters of the control object and get a more complete and reliable forecast. The proposed structure of an artificial neural network based on a fuzzy inference system, which implements the capabilities of neural networks and fuzzy logic


2021 ◽  
Author(s):  
S.V. Zimina

Setting up artificial neural networks using iterative algorithms is accompanied by fluctuations in weight coefficients. When an artificial neural network solves the problem of allocating a useful signal against the background of interference, fluctuations in the weight vector lead to a deterioration of the useful signal allocated by the network and, in particular, losses in the output signal-to-noise ratio. The goal of the research is to perform a statistical analysis of an artificial neural network, that includes analysis of losses in the output signal-to-noise ratio associated with fluctuations in the weight coefficients of an artificial neural network. We considered artificial neural networks that are configured using discrete gradient, fast recurrent algorithms with restrictions, and the Hebb algorithm. It is shown that fluctuations lead to losses in the output signal/noise ratio, the level of which depends on the type of algorithm under consideration and the speed of setting up an artificial neural network. Taking into account the fluctuations of the weight vector in the analysis of the output signal-to-noise ratio allows us to correlate the permissible level of loss in the output signal-to-noise ratio and the speed of network configuration corresponding to this level when working with an artificial neural network.


JURTEKSI ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 85-94
Author(s):  
Muhammad Jufri

Abstract: The population growth in Indonesia is increasing rapidly every year, so to help the government control the population growth through family planning programs, especially in the city of Batam. This study explains and describes one of the Artificial Terms Network methods, namely Backpropagation, where this method can predict what will happen in the future using data and information in the past. This study aims to predict the birth rate in the city of Batam to help the government with the family planning program. The data used is the annual data on the number of births in the city of Batam in 2016-2020 at The Civil Registry Office. To facilitate the analysis of research data, the data were tested using Matlab R2015b. In this study, the training process was carried out using 3 network architectures, namely 4-10-1, 5-18-1, and 4-43-1. Of these 3 architectures, the best is the 4-43-1 architecture with an accuracy rate of 91% and an MSE value of 0.0012205. The Backpropagation method can predict the amount of population growth in the city of Batam based on existing data in the past.           Keywords: artificial neural network; backpropagation; prediction   Abstrak: Pertumbuhan jumlah penduduk diindonesia yang setiap tahun meningkat dengan pesat, maka untuk membantu pemerintah mengendalikan jumlah pertumbuhan penduduk melalui program keluarga berencana khususnya dikota Batam. Penelitian ini  menjelaskan dan memaparkan tentang salah satu metode Jaringan Syarat Tiruan yaitu Backpropagation, dimana metode ini dapat memprediksi apa yang akan terjadi masa yang akan datang dengan menggunakan data dan informasi dimasa lalu. Penelitian ini bertujuan untuk memprediksi tingkat kelahiran di kota Batam sehingga membatu pemerintah untuk perencanaan keluarga berencana. Data yang digunakan yaitu data tahunan jumlah kelahiran di kota Batam pada tahun 2016-2020 pada Dinas Kependudukan dan Catatan Sipil. Untuk mempermudah analisis data penelitian maka, data diuji menggunakan Matlab R2015b. Pada penelitian ini dilakukan proses pelatihan menggunakan  3 arsitektur jaringan yaitu 4-10-1, 5-18-1, dan 4-43-1. Dari ke-3 arsitektur ini yang terbaik adalah arsitektur 4-43-1 dengan tingkat akurasi sebesar 91% dan nilai MSE 0,0012205. Metode backpropagation mampu memprediksi jumlah pertumbuhan penduduk di kota Batam berdasarkan data yang ada dimasa lalu. Kata kunci: backpropagation; jaringan syaraf tiruan; prediksi 


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


2019 ◽  
Author(s):  
René Janßen ◽  
Jakob Zabel ◽  
Uwe von Lukas ◽  
Matthias Labrenz

AbstractArtificial neural networks can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network to support environmental monitoring efforts in case of a contamination event by detecting induced changes towards the microbial communities. The neural net was trained on taxonomic cluster count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of the herbicide glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the clusters primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species in cases of glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.Highlight bullet pointsAn artificial neural net was able to identify glyphosate-affected microbial community assemblages based on next generation sequencing dataDecision-relevant taxonomic clusters can be identified by a stochastically subsetting approachJust a fraction of present clusters is needed for classificationFiltering of input data improves classification


Sign in / Sign up

Export Citation Format

Share Document