A Study and Implementation of a Movie Recommendation System in a Cloud-based Environment

Author(s):  
Jaime Raigoza ◽  
Vikrantsinh Karande

The availability of huge amounts of data in recent years have led users to being faced with an overload of choices. The outcome is a growth on the importance of recommendation systems due to their ability to solve this choice overload problem, by providing users with the most relevant products from many possible choices. For producing recommendations, things like a user's psychological profile, their browsing history and movie ratings from other users can be considered. To determine how strongly two user's behavior are related to each other, a Pearson correlation coefficient value is often calculated. In this paper, we study the recommendation system on a proposed cloud based environment to produce a list of recommended movies based on a user's profile information. Based on the Software-as-a-Service (SaaS) model implemented, we discuss the concepts such as collaborative filtering and content-based filtering. Given a MovieLens data-set, our results indicate that the proposed approach can provide a high performance in terms of precision, and generate more reliable and personalized movie recommendations, when given a greater number of movies rated by a user. An evaluation was done under minimal known data, which commonly leads to the cold-start problem.

2021 ◽  
pp. 016555152110184
Author(s):  
Gunjan Chandwani ◽  
Anil Ahlawat ◽  
Gaurav Dubey

Document retrieval plays an important role in knowledge management as it facilitates us to discover the relevant information from the existing data. This article proposes a cluster-based inverted indexing algorithm for document retrieval. First, the pre-processing is done to remove the unnecessary and redundant words from the documents. Then, the indexing of documents is done by the cluster-based inverted indexing algorithm, which is developed by integrating the piecewise fuzzy C-means (piFCM) clustering algorithm and inverted indexing. After providing the index to the documents, the query matching is performed for the user queries using the Bhattacharyya distance. Finally, the query optimisation is done by the Pearson correlation coefficient, and the relevant documents are retrieved. The performance of the proposed algorithm is analysed by the WebKB data set and Twenty Newsgroups data set. The analysis exposes that the proposed algorithm offers high performance with a precision of 1, recall of 0.70 and F-measure of 0.8235. The proposed document retrieval system retrieves the most relevant documents and speeds up the storing and retrieval of information.


Author(s):  
Rabi Narayan Behera ◽  
Sujata Dash

Due to rapid digital explosion user shows interest towards finding suggestions regarding a particular topic before taking any decision. Nowadays, a movie recommendation system is an upcoming area which suggests movies based on user profile. Many researchers working on supervised or semi-supervised ensemble based machine learning approach for matching more appropriate profiles and suggest related movies. In this paper a hybrid recommendation system is proposed which includes both collaborative and content based filtering to design a profile matching algorithm. A nature inspired Particle Swam Optimization technique is applied to fine tune the profile matching algorithm by assigning to multiple agents or particle with some initial random guess. The accuracy of the model will be judged comparing with Genetic algorithm.


2020 ◽  
Vol 10 (12) ◽  
pp. 4183 ◽  
Author(s):  
Luong Vuong Nguyen ◽  
Min-Sung Hong ◽  
Jason J. Jung ◽  
Bong-Soo Sohn

This paper provides a new approach that improves collaborative filtering results in recommendation systems. In particular, we aim to ensure the reliability of the data set collected which is to collect the cognition about the item similarity from the users. Hence, in this work, we collect the cognitive similarity of the user about similar movies. Besides, we introduce a three-layered architecture that consists of the network between the items (item layer), the network between the cognitive similarity of users (cognition layer) and the network between users occurring in their cognitive similarity (user layer). For instance, the similarity in the cognitive network can be extracted from a similarity measure on the item network. In order to evaluate our method, we conducted experiments in the movie domain. In addition, for better performance evaluation, we use the F-measure that is a combination of two criteria P r e c i s i o n and R e c a l l . Compared with the Pearson Correlation, our method more accurate and achieves improvement over the baseline 11.1% in the best case. The result shows that our method achieved consistent improvement of 1.8% to 3.2% for various neighborhood sizes in MAE calculation, and from 2.0% to 4.1% in RMSE calculation. This indicates that our method improves recommendation performance.


Author(s):  
Ghanashyam Vibhandik

Movies are very significant in our lives. It is one of the many forms of entertainment that we encounter in our daily lives. It is up to the individual to decide whatever type of film they choose to see, whether it is a comedy, romantic film, action film, or adventure film. However, the issue is locating acceptable content, as there is a large amount of information created each year. As a result, finding our favourite film is really difficult. The goal of this research is to improve the regular filtering technique's performance and accuracy. A recommendation system can be implemented using a variety of approaches. Content-based filtering and collaborative filtering strategies are employed in this work. The content-based filtering approach analyses the user's history/past behaviour and recommends a list of comparable movies depending on their input. K-NN algorithms and collaborative filtering are also employed in this paper to improve the accuracy of the results. Cosine similarity is utilised in this work to quickly discover comparable information. The correctness of the cosine angle is measured by cosine similarity. People may quickly find their favourite movie content thanks to all of this.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1215
Author(s):  
Mazhar Javed Awan ◽  
Rafia Asad Khan ◽  
Haitham Nobanee ◽  
Awais Yasin ◽  
Syed Muhammad Anwar ◽  
...  

In this era of big data, the amount of video content has dramatically increased with an exponential broadening of video streaming services. Hence, it has become very strenuous for end-users to search for their desired videos. Therefore, to attain an accurate and robust clustering of information, a hybrid algorithm was used to introduce a recommender engine with collaborative filtering using Apache Spark and machine learning (ML) libraries. In this study, we implemented a movie recommendation system based on a collaborative filtering approach using the alternating least squared (ALS) model to predict the best-rated movies. Our proposed system uses the last search data of a user regarding movie category and references this to instruct the recommender engine, thereby making a list of predictions for top ratings. The proposed study used a model-based approach of matrix factorization, the ALS algorithm along with a collaborative filtering technique, which solved the cold start, sparse, and scalability problems. In particular, we performed experimental analysis and successfully obtained minimum root mean squared errors (oRMSEs) of 0.8959 to 0.97613, approximately. Moreover, our proposed movie recommendation system showed an accuracy of 97% and predicted the top 1000 ratings for movies.


Author(s):  
Avinash Navlani ◽  
Nidhi Dadhich

With the increase in user choices and rapid change in user preferences, various methods required to capture such increasing choices and changing preferences. Online systems require quick adaptability. Another aspect is that with the increase in a number of items and users, computation time increases considerably. Thus system needs parallel computing platform to run newer designed recommender system techniques. Recommendation system helps people to tackle the choice overload problem and help to select the efficient one. Even though there is lots of work have been done in the recommendation system, still there is a problem in handling various types of data and basically to handle a large amount of data. The main aim of the recommendation system is to provide the best opinion from the available large amount of data. The present chapter describes an introduction to recommender systems, its functions, types, techniques, applications, collaborative filtering, content-based filtering and evaluation of performance.


Internet based recruiting platforms decrease advertisement cost, but they suffer from information overload problem. The job recommendation systems (JRS) have achieved success in e-recruitment process but still they are not able to capture the complexity of matching between candidates’ desires and organizations’ requirements. Thus, we propose a hybrid JRS which combines recommendations of content-based filtering (CBF) and collaborative filtering (CF) to overcome their individual major shortcomings namely overspecialization and over-fitting. In proposed system, CBF model makes recommendations based on candidates’ skills identified from past jobs in which they have applied and CF model makes recommendations based on jobs in which similar users have applied and also those jobs in which that user has applied frequently together in very similar contexts using Word2Vec’s skip-gram model. We used k-Nearest Neighbors technique and Pearson Correlation Coefficient. The recall of our proposed model is found to be 63.97% on a data set which had nearly 1900+ jobs and 23,000 job applicants


Author(s):  
Jyoti Kumari

Abstract: Due to its vast applications in several sectors, the recommender system has gotten a lot of interest and has been investigated by academics in recent years. The ability to comprehend and apply the context of recommendation requests is critical to the success of any current recommender system. Nowadays, the suggestion system makes it simple to locate the items we require. Movie recommendation systems are intended to assist movie fans by advising which movie to see without needing users to go through the time-consuming and complicated method of selecting a film from a large number of thousands or millions of options. The goal of this research is to reduce human effort by recommending movies based on the user's preferences. This paper introduces a method for a movie recommendation system based on a convolutional neural network with individual features layers of users and movies performed by analyzing user activity and proposing higher-rated films to them. The proposed CNN approach on the MovieLens-1m dataset outperforms the other conventional approaches and gives accurate recommendation results. Keywords: Recommender system, convolutional neural network, movielens-1m, cosine similarity, Collaborative filtering, content-based filtering.


Author(s):  
S. Sridevi ◽  
Celeste Murnal

As world is evolving, similarly people's desire, trend, interests are also changing. Same way even in the field of movies, people want to watch the movies according to their interest. Many web-based movie service providers have emerged and to increase their business and popularity, they want to keep their subscribers entertained. To improve their business, the service provider should recommend movies which users might like, so that they might watch another movie and be entertained. By doing this there is high possibility that customers will periodically renew the web-based movie service provider application. The objective of this project is to implement the machine learning based movie recommendation system which can recommend the movies to the users based on their interest and ratings. To achieve this, content-based filtering is used to recommend movie based on movie-movie similarity, collaborative based filtering is used to compute features based on user information and movie information. The proposed system uses the new ensemble learning algorithm, XGBoost algorithm to improve the performance. The results show that the proposed system is effective for movie recommendation and the system minimizes the root mean square error (RMSE).


Sign in / Sign up

Export Citation Format

Share Document