GAN-Based Medical Images Synthesis

Author(s):  
Huan Yang ◽  
Pengjiang Qian

Medical images have always occupied a very important position in modern medical diagnosis. They are standard tools for doctors to carry out clinical diagnosis. However, nowadays, most clinical diagnosis relies on the doctors' professional knowledge and personal experience, which can be easily affected by many factors. In order to reduce the diagnosis errors caused by human subjective differences and improve the accuracy and reliability of the diagnosis results, a practical and reliable method is to use artificial intelligence technology to assist computer-aided diagnosis (CAD). With the help of powerful computer storage capabilities and advanced artificial intelligence algorithms, CAD can make up for the shortcomings of traditional manual diagnosis and realize efficient, intelligent diagnosis. This paper reviews GAN-based medical image synthesis methods, introduces the basic architecture and important improvements of GAN, lists some representative application examples, and finally makes a summary and discussion.

2019 ◽  
Vol 8 (4) ◽  
pp. 462 ◽  
Author(s):  
Muhammad Owais ◽  
Muhammad Arsalan ◽  
Jiho Choi ◽  
Kang Ryoung Park

Medical-image-based diagnosis is a tedious task‚ and small lesions in various medical images can be overlooked by medical experts due to the limited attention span of the human visual system, which can adversely affect medical treatment. However, this problem can be resolved by exploring similar cases in the previous medical database through an efficient content-based medical image retrieval (CBMIR) system. In the past few years, heterogeneous medical imaging databases have been growing rapidly with the advent of different types of medical imaging modalities. Recently, a medical doctor usually refers to various types of imaging modalities all together such as computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and ultrasound, etc of various organs in order for the diagnosis and treatment of specific disease. Accurate classification and retrieval of multimodal medical imaging data is the key challenge for the CBMIR system. Most previous attempts use handcrafted features for medical image classification and retrieval, which show low performance for a massive collection of multimodal databases. Although there are a few previous studies on the use of deep features for classification, the number of classes is very small. To solve this problem, we propose the classification-based retrieval system of the multimodal medical images from various types of imaging modalities by using the technique of artificial intelligence, named as an enhanced residual network (ResNet). Experimental results with 12 databases including 50 classes demonstrate that the accuracy and F1.score by our method are respectively 81.51% and 82.42% which are higher than those by the previous method of CBMIR (the accuracy of 69.71% and F1.score of 69.63%).


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


2020 ◽  
Vol 237 (12) ◽  
pp. 1438-1441
Author(s):  
Soenke Langner ◽  
Ebba Beller ◽  
Felix Streckenbach

AbstractMedical images play an important role in ophthalmology and radiology. Medical image analysis has greatly benefited from the application of “deep learning” techniques in clinical and experimental radiology. Clinical applications and their relevance for radiological imaging in ophthalmology are presented.


2022 ◽  
Vol 12 ◽  
Author(s):  
Caijie Qin ◽  
Wenxing Hu ◽  
Xinsheng Wang ◽  
Xibo Ma

Craniopharyngioma is a congenital brain tumor with clinical characteristics of hypothalamic-pituitary dysfunction, increased intracranial pressure, and visual field disorder, among other injuries. Its clinical diagnosis mainly depends on radiological examinations (such as Computed Tomography, Magnetic Resonance Imaging). However, assessing numerous radiological images manually is a challenging task, and the experience of doctors has a great influence on the diagnosis result. The development of artificial intelligence has brought about a great transformation in the clinical diagnosis of craniopharyngioma. This study reviewed the application of artificial intelligence technology in the clinical diagnosis of craniopharyngioma from the aspects of differential classification, prediction of tissue invasion and gene mutation, prognosis prediction, and so on. Based on the reviews, the technical route of intelligent diagnosis based on the traditional machine learning model and deep learning model were further proposed. Additionally, in terms of the limitations and possibilities of the development of artificial intelligence in craniopharyngioma diagnosis, this study discussed the attentions required in future research, including few-shot learning, imbalanced data set, semi-supervised models, and multi-omics fusion.


Author(s):  
A. Swarnambiga ◽  
Vasuki S.

The term medical image covers a wide variety of types of images (modality), especially in medical image registration with very different perspective. In this chapter, spatial technique is approached and analyzed for providing effective clinical diagnosis. The effective conventional methods are chosen for this registration. Researchers have developed and focused this research using proven conventional methods in the respective fields of registration Affine, Demons, and Affine with B-spline. From the overall analysis, it is clear that Affine with B-Spline performs better in registration of medical images than Affine and Demons.


2020 ◽  
Vol 34 (07) ◽  
pp. 10486-10493
Author(s):  
Bing Cao ◽  
Han Zhang ◽  
Nannan Wang ◽  
Xinbo Gao ◽  
Dinggang Shen

In various clinical scenarios, medical image is crucial in disease diagnosis and treatment. Different modalities of medical images provide complementary information and jointly helps doctors to make accurate clinical decision. However, due to clinical and practical restrictions, certain imaging modalities may be unavailable nor complete. To impute missing data with adequate clinical accuracy, here we propose a framework called self-supervised collaborative learning to synthesize missing modality for medical images. The proposed method comprehensively utilize all available information correlated to the target modality from multi-source-modality images to generate any missing modality in a single model. Different from the existing methods, we introduce an auto-encoder network as a novel, self-supervised constraint, which provides target-modality-specific information to guide generator training. In addition, we design a modality mask vector as the target modality label. With experiments on multiple medical image databases, we demonstrate a great generalization ability as well as specialty of our method compared with other state-of-the-arts.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiang Li ◽  
Yuchen Jiang ◽  
Juan J. Rodriguez-Andina ◽  
Hao Luo ◽  
Shen Yin ◽  
...  

AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document