Intelligent Personalized Abnormality Detection for Remote Health Monitoring

2020 ◽  
Vol 16 (2) ◽  
pp. 87-109 ◽  
Author(s):  
Poorani Marimuthu ◽  
Varalakshmi Perumal ◽  
Vaidehi Vijayakumar

Machine learning algorithms are extensively used in healthcare analytics to learn normal and abnormal patterns automatically. The detection and prediction accuracy of any machine learning model depends on many factors like ground truth instances, attribute relationships, model design, the size of the dataset, the percentage of uncertainty, the training and testing environment, etc. Prediction models in healthcare should generate a minimal false positive and false negative rate. To accomplish high classification or prediction accuracy, the screening of health status needs to be personalized rather than following general clinical practice guidelines (CPG) which fits for an average population. Hence, a personalized screening model (IPAD – Intelligent Personalized Abnormality Detection) for remote healthcare is proposed that tailored to specific individual. The severity level of the abnormal status has been derived using personalized health values and the IPAD model obtains an area under the curve (AUC) of 0.907.

Author(s):  
Saugata Bose ◽  
Ritambhra Korpal

In this chapter, an initiative is proposed where natural language processing (NLP) techniques and supervised machine learning algorithms have been combined to detect external plagiarism. The major emphasis is on to construct a framework to detect plagiarism from monolingual texts by implementing n-gram frequency comparison approach. The framework is based on 120 characteristics which have been extracted during pre-processing steps using simple NLP approach. Afterward, filter metrics has been applied to select most relevant features and supervised classification learning algorithm has been used later to classify the documents in four levels of plagiarism. Then, confusion matrix was built to estimate the false positives and false negatives. Finally, the authors have shown C4.5 decision tree-based classifier's suitability on calculating accuracy over naive Bayes. The framework achieved 89% accuracy with low false positive and false negative rate and it shows higher precision and recall value comparing to passage similarities method, sentence similarity method, and search space reduction method.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4368 ◽  
Author(s):  
Chun-Wei Chen ◽  
Chun-Chang Li ◽  
Chen-Yu Lin

Energy baseline is an important method for measuring the energy-saving benefits of chiller system, and the benefits can be calculated by comparing prediction models and actual results. Currently, machine learning is often adopted as a prediction model for energy baselines. Common models include regression, ensemble learning, and deep learning models. In this study, we first reviewed several machine learning algorithms, which were used to establish prediction models. Then, the concept of clustering to preprocess chiller data was adopted. Data mining, K-means clustering, and gap statistic were used to successfully identify the critical variables to cluster chiller modes. Applying these key variables effectively enhanced the quality of the chiller data, and combining the clustering results and the machine learning model effectively improved the prediction accuracy of the model and the reliability of the energy baselines.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mavra Mehmood ◽  
Muhammad Rizwan ◽  
Michal Gregus ml ◽  
Sidra Abbas

Cervical malignant growth is the fourth most typical reason for disease demise in women around the globe. Cervical cancer growth is related to human papillomavirus (HPV) contamination. Early screening made cervical cancer a preventable disease that results in minimizing the global burden of cervical cancer. In developing countries, women do not approach sufficient screening programs because of the costly procedures to undergo examination regularly, scarce awareness, and lack of access to the medical center. In this manner, the expectation of the individual patient's risk becomes very high. There are many risk factors relevant to malignant cervical formation. This paper proposes an approach named CervDetect that uses machine learning algorithms to evaluate the risk elements of malignant cervical formation. CervDetect uses Pearson correlation between input variables as well as with the output variable to pre-process the data. CervDetect uses the random forest (RF) feature selection technique to select significant features. Finally, CervDetect uses a hybrid approach by combining RF and shallow neural networks to detect Cervical Cancer. Results show that CervDetect accurately predicts cervical cancer, outperforms the state-of-the-art studies, and achieved an accuracy of 93.6%, mean squared error (MSE) error of 0.07111, false-positive rate (FPR) of 6.4%, and false-negative rate (FNR) of 100%.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bum-Joo Cho ◽  
Kyoung Min Kim ◽  
Sanchir-Erdene Bilegsaikhan ◽  
Yong Joon Suh

Abstract Febrile neutropenia (FN) is one of the most concerning complications of chemotherapy, and its prediction remains difficult. This study aimed to reveal the risk factors for and build the prediction models of FN using machine learning algorithms. Medical records of hospitalized patients who underwent chemotherapy after surgery for breast cancer between May 2002 and September 2018 were selectively reviewed for development of models. Demographic, clinical, pathological, and therapeutic data were analyzed to identify risk factors for FN. Using machine learning algorithms, prediction models were developed and evaluated for performance. Of 933 selected inpatients with a mean age of 51.8 ± 10.7 years, FN developed in 409 (43.8%) patients. There was a significant difference in FN incidence according to age, staging, taxane-based regimen, and blood count 5 days after chemotherapy. The area under the curve (AUC) built based on these findings was 0.870 on the basis of logistic regression. The AUC improved by machine learning was 0.908. Machine learning improves the prediction of FN in patients undergoing chemotherapy for breast cancer compared to the conventional statistical model. In these high-risk patients, primary prophylaxis with granulocyte colony-stimulating factor could be considered.


Author(s):  
Dan Gabriel ANGHEL

This paper investigates if forecasting models based on Machine Learning (ML) Algorithms are capable to predict intraday prices in the small, frontier stock market of Romania. The results show that this is indeed the case. Moreover, the prediction accuracy of the various models improves as the forecasting horizon increases. Overall, ML forecasting models are superior to the passive buy and hold strategy, as well as to a naïve strategy that always predicts the last known price action will continue. However, we also show that this superior predictive ability cannot be converted into “abnormal”, economically significant profits after considering transaction costs. This implies that intraday stock prices incorporate information within the accepted bounds of weak-form market efficiency, and cannot be “timed” even by sophisticated investors equipped with state of the art ML prediction models.


2021 ◽  
Vol 8 (9) ◽  
pp. 117
Author(s):  
Marco Penso ◽  
Mauro Pepi ◽  
Valentina Mantegazza ◽  
Claudia Cefalù ◽  
Manuela Muratori ◽  
...  

Background: Mitral valve regurgitation (MR) is the most common valvular heart disease and current variables associated with MR recurrence are still controversial. We aim to develop a machine learning-based prognostic model to predict causes of mitral valve (MV) repair failure and MR recurrence. Methods: 1000 patients who underwent MV repair at our institution between 2008 and 2018 were enrolled. Patients were followed longitudinally for up to three years. Clinical and echocardiographic data were included in the analysis. Endpoints were MV repair surgical failure with consequent MV replacement or moderate/severe MR (>2+) recurrence at one-month and moderate/severe MR recurrence after three years. Results: 817 patients (DS1) had an echocardiographic examination at one-month while 295 (DS2) also had one at three years. Data were randomly divided into training (DS1: n = 654; DS2: n = 206) and validation (DS1: n = 164; DS2 n = 89) cohorts. For intra-operative or early MV repair failure assessment, the best area under the curve (AUC) was 0.75 and the complexity of mitral valve prolapse was the main predictor. In predicting moderate/severe recurrent MR at three years, the best AUC was 0.92 and residual MR at six months was the most important predictor. Conclusions: Machine learning algorithms may improve prognosis after MV repair procedure, thus improving indications for correct candidate selection for MV surgical repair.


2014 ◽  
Vol 11 (1) ◽  
pp. 175-188 ◽  
Author(s):  
Nemanja Macek ◽  
Milan Milosavljevic

The KDD Cup '99 is commonly used dataset for training and testing IDS machine learning algorithms. Some of the major downsides of the dataset are the distribution and the proportions of U2R and R2L instances, which represent the most dangerous attack types, as well as the existence of R2L attack instances identical to normal traffic. This enforces minor category detection complexity and causes problems while building a machine learning model capable of detecting these attacks with sufficiently low false negative rate. This paper presents a new support vector machine based intrusion detection system that classifies unknown data instances according both to the feature values and weight factors that represent importance of features towards the classification. Increased detection rate and significantly decreased false negative rate for U2R and R2L categories, that have a very few instances in the training set, have been empirically proven.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


Sign in / Sign up

Export Citation Format

Share Document