Design and Experimental Investigation of a 2-DOF Planar Micro-Positioning Table

Author(s):  
Yanling Tian ◽  
Zhiyong Guo ◽  
Fujun Wang ◽  
Junlan Li ◽  
Dawei Zhang

This paper presents the mechanical design and experimental characterization of a 2-DOF serial flexure-based micropositioning table. The cascade mechanical structure is proposed to implement planar motions of the moving platform. In order to increase the stroke of the moving platform, a lever mechanism is designed to amplify the displacement of the piezoelectric actuator. The finite element method is utilized to analyze the mechanical and thermal characteristics of the proposed 2-DOF micropositioning table. The WEDM (Wire Electro-Discharge Machining) technique is used to manufacture the prototype of the micropositioning table. A number of experimental tests have been conducted to investigate the characteristics of the developed system.

2014 ◽  
Vol 615 ◽  
pp. 57-62 ◽  
Author(s):  
Raquel Acero Cacho ◽  
Jose Antonio Albajez ◽  
José Antonio Yagüe-Fabra ◽  
Marta Torralba ◽  
Margarita Valenzuela ◽  
...  

The nanotechnology field has been developing strongly in recent years and ultra-precision measuring systems are nowadays required. A new two-dimensional moving platform with 50x50 mm range of travel, nanometer resolution and sub micrometer accuracy is being designed by the authors in order to be integrated with an Atomic Force Microscope (AFM). In this work the definition, design and experimental characterization of a homing sensor system for this 2D moving platform is presented. The homing sensor system will allow the generation of an absolute 2D reference for the platform (X-Y axis and θz rotation), defining an initial cero for the measuring system, which is based on laser encoders.


2021 ◽  
Author(s):  
Tomasz Korona ◽  
Pawel Kowol ◽  
GRAZIA LO SCIUTO

Abstract In this article the design and manufacture of the innovative MR rotary brake based on peristaltic pump inspired by the concept model of the pliers and the Rochester Pean forceps are presented . For the calculation and analysis of created structure comprehensive of roller, housing and pliers, simulations concerning the stress and strain are conducted to investigate the deformation and possible failure of part or assembly. Experimental tests including measurements of compression force and magnetic field were conducted to evaluate the performance of proposed designed MR rotary brake based on peristaltic pump system constituted by tube containing MR fluid and pliers with arm responsible of the movement and arm completely hold on bench vise


Author(s):  
P. Nava ◽  
N. Paone ◽  
G. L. Rossi ◽  
E. P. Tomasini

A measurement system for non-intrusive monitoring of rotating blade vibration in turbomachines based on fiber optic sensors is presented. The design of the whole system is discussed; the development of special purpose sensors, their interfacing to the data acquisition system and the signal processing are outlined. The processing algorithms are tested by software simulation for several possible blade vibrations. Experimental tests performed on different bladed rotors are presented. Results are compared to simultaneous strain gauge measurements.


2021 ◽  
Vol 898 ◽  
pp. 43-48
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Daniele Baraldi ◽  
Antonella Cecchi ◽  
Daniel V. Oliveira

In the last years, the interest in eco-sustainable composites has consistently increased. Such innovative materials are actually a promising sustainable solution for structural strengthening since they can be an alternative to petroleum‐based materials, which are frequently used for masonry retrofitting. This work describes an experimental campaign dedicated to investigating the behavior of Fabric-Reinforced Cementitious Matrix (FRCM) with natural fibers (NFRCM) made with eco-sustainable materials. Experimental tests are performed on unreinforced masonry panels (URM) and reinforced ones (RM), for characterizing their mechanical behavior. URM samples are compared with RM ones accounting for their response under shear actions.


1994 ◽  
Vol 116 (3) ◽  
pp. 657-662 ◽  
Author(s):  
P. Nava ◽  
N. Paone ◽  
G. L. Rossi ◽  
E. P. Tomasini

A measurement system for nonintrusive monitoring of rotating blade vibration in turbomachines based on fiber optic sensors is presented. The design of the whole system is discussed; the development of special purpose sensors, their interfacing to the data acquisition system, and the signal processing are outlined. The processing algorithms are tested by software simulation for several possible blade vibrations. Experimental tests performed on different bladed rotors are presented. Results are compared to simultaneous strain gage measurements.


Robotica ◽  
2014 ◽  
Vol 33 (9) ◽  
pp. 1984-2000
Author(s):  
Chenghui Nie ◽  
Marin Assaliyski ◽  
Matthew Spenko

SUMMARYThis paper describes the design and experimental validation of an omnidirectional unmanned ground vehicle built for operation on real-world, unstructured terrains. The omnidirectional capabilities of this robot give it advantages over skid-steered or Ackermann-steered vehicles in tight and confined spaces. The robot's conventional wheels allow for operation in natural, outdoor environments as compared to omnidirectional robots that use specialized wheels with small, slender rollers and parts that can easily become obstructed with debris and dirt. Additionally, the robot's active split offset caster design allows the robot to kinematically follow continuous but non-differentiable paths and heading angles regardless of its current kinematic configuration. The active split offset caster design also results in less scrubbing torque and therefore less energy consumption during steering as compared to actively steered caster designs. The focus of this paper is the robot's mechanical design as it relates to kinematic isotropy and experimental validation of the design.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2269
Author(s):  
Wenxiang Ding ◽  
Maxime Bavencoffe ◽  
Marc Lethiecq

Ultrasonic transducers performance can be seriously deteriorated by loss of adhesion between some constitutive elements such as the active element, the backing, or the matching layer. In the present work, the influence of bonding delaminations on the performance of a single-element ultrasonic transducer, which is composed of a piezoelectric disk, a backing, and a matching layer, is studied numerically and experimentally. Based on the positions between layers, two cases, i.e., delaminations between ceramic and backing or between ceramic and matching layer, are considered. Each case involves three different types of delaminations, which are marked as delamination type (DT)-I, II, and III. DT-I, a circular shape delamination, starts from the center and expands towards the peripheric zone; DT-II, an annular shape delamination, starts from the peripheric zone and expands towards the center; DT-III is a sector shape delamination with a given angle. The numerical simulations are performed by the finite element method and the influence of delaminations on the electromechanical admittance (EMA) of the transducer is investigated. 3D printed backings and matching layers are mounted on a PZT sample to assemble delaminated single-element transducers. An impedance analyzer is used for experimental measurements. Comparison between numerical and experimental results shows a reasonable agreement making changes in EMA an interesting indicator to inform about the occurrence and severity of delaminations in a single-element ultrasonic transducer.


2021 ◽  
Vol 63 (2) ◽  
pp. 113-118
Author(s):  
Samet Fidanciogullari ◽  
Ahmet Yildiz

Abstract This paper is about the theoretical and experimental characterizations of the torsional vibration behavior of circular and rectangular cross-sectional arc springs. Firstly, the dynamic behaviors of arc springs with different cross-sectional wire profiles designed for a dual mass flywheel are modeled by mathematical formulations. After that, experimental tests are performed to verify these models and it is observed that the stiffness characterizations are in good agreement with experimental results. Lastly, the masses of two different arc springs are compared by regarding the same vibration stiffness criteria and it is demonstrated that the rectangular wire provides an arc spring with a 9.44 vol.-% lighter structure. Thus, the outcomes of this paper can be good references for the manufacturer about the numerical and experimental characterization of dual mass flywheel springs, especially for rectangular wire arc springs.


Sign in / Sign up

Export Citation Format

Share Document