Homing Sensor System Design for a 2D Long Range Nanopositioning Moving Platform

2014 ◽  
Vol 615 ◽  
pp. 57-62 ◽  
Author(s):  
Raquel Acero Cacho ◽  
Jose Antonio Albajez ◽  
José Antonio Yagüe-Fabra ◽  
Marta Torralba ◽  
Margarita Valenzuela ◽  
...  

The nanotechnology field has been developing strongly in recent years and ultra-precision measuring systems are nowadays required. A new two-dimensional moving platform with 50x50 mm range of travel, nanometer resolution and sub micrometer accuracy is being designed by the authors in order to be integrated with an Atomic Force Microscope (AFM). In this work the definition, design and experimental characterization of a homing sensor system for this 2D moving platform is presented. The homing sensor system will allow the generation of an absolute 2D reference for the platform (X-Y axis and θz rotation), defining an initial cero for the measuring system, which is based on laser encoders.

2019 ◽  
Vol 296 ◽  
pp. 292-301 ◽  
Author(s):  
Lingxia Chen ◽  
Yong Sheng Ong ◽  
Shuilin Chen ◽  
Sinead O’Keeffe ◽  
Sean Gillespie ◽  
...  

Author(s):  
Yanling Tian ◽  
Zhiyong Guo ◽  
Fujun Wang ◽  
Junlan Li ◽  
Dawei Zhang

This paper presents the mechanical design and experimental characterization of a 2-DOF serial flexure-based micropositioning table. The cascade mechanical structure is proposed to implement planar motions of the moving platform. In order to increase the stroke of the moving platform, a lever mechanism is designed to amplify the displacement of the piezoelectric actuator. The finite element method is utilized to analyze the mechanical and thermal characteristics of the proposed 2-DOF micropositioning table. The WEDM (Wire Electro-Discharge Machining) technique is used to manufacture the prototype of the micropositioning table. A number of experimental tests have been conducted to investigate the characteristics of the developed system.


Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Erika Ottaviano ◽  
Marco Ceccarelli ◽  
Francesco Palmucci

SUMMARYIn this paper, an application is presented of a cable-based parallel manipulator as measuring system for an experimental identification of human walking characteristics. Experimental results have been obtained by means of a new version of CaTraSys (Cassino Tracking System), which is a measuring system that has been designed and built at Laboratory of Robotics and Mechatronics (LARM) in Cassino, Italy. The new version of the CaTraSys system has been used to determine the trajectory of the human limb extremity during walking operation and furthermore the system is able to measure forces that are exerted by a limb. Experimental determination of articulation mobility is also presented with numerical and experimental results.


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


Sign in / Sign up

Export Citation Format

Share Document