Application of Domain Ontologies to Natural Language Processing

2015 ◽  
Vol 5 (3) ◽  
pp. 19-38 ◽  
Author(s):  
María Herrero-Zazo ◽  
Isabel Segura-Bedmar ◽  
Janna Hastings ◽  
Paloma Martínez

Natural Language Processing (NLP) techniques can provide an interesting way to mine the growing biomedical literature, and a promising approach for new knowledge discovery. However, the major bottleneck in this area is that these systems rely on specific resources providing the domain knowledge. Domain ontologies provide a contextual framework and a semantic representation of the domain, and they can contribute to a better performance of current NLP systems. However, their contribution to information extraction has not been well studied yet. The aim of this paper is to provide insights into the potential role that domain ontologies can play in NLP. To do this, the authors apply the drug-drug interactions ontology (DINTO) to named entity recognition and relation extraction from pharmacological texts. The authors use the DDI corpus, a gold-standard for the development and evaluation of IE systems in this domain, and evaluate their results in the framework of the last SemEval-2013 DDI Extraction task.

2019 ◽  
Author(s):  
Peng Su ◽  
Gang Li ◽  
Cathy Wu ◽  
K. Vijay-Shanker

AbstractSignificant progress has been made in applying deep learning on natural language processing tasks recently. However, deep learning models typically require a large amount of annotated training data while often only small labeled datasets are available for many natural language processing tasks in biomedical literature. Building large-size datasets for deep learning is expensive since it involves considerable human effort and usually requires domain expertise in specialized fields. In this work, we consider augmenting manually annotated data with large amounts of data using distant supervision. However, data obtained by distant supervision is often noisy, we first apply some heuristics to remove some of the incorrect annotations. Then using methods inspired from transfer learning, we show that the resulting models outperform models trained on the original manually annotated sets.


2020 ◽  
Vol 10 (18) ◽  
pp. 6429
Author(s):  
SungMin Yang ◽  
SoYeop Yoo ◽  
OkRan Jeong

Along with studies on artificial intelligence technology, research is also being carried out actively in the field of natural language processing to understand and process people’s language, in other words, natural language. For computers to learn on their own, the skill of understanding natural language is very important. There are a wide variety of tasks involved in the field of natural language processing, but we would like to focus on the named entity registration and relation extraction task, which is considered to be the most important in understanding sentences. We propose DeNERT-KG, a model that can extract subject, object, and relationships, to grasp the meaning inherent in a sentence. Based on the BERT language model and Deep Q-Network, the named entity recognition (NER) model for extracting subject and object is established, and a knowledge graph is applied for relation extraction. Using the DeNERT-KG model, it is possible to extract the subject, type of subject, object, type of object, and relationship from a sentence, and verify this model through experiments.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Tiberiu-Marian Georgescu

This paper describes the development and implementation of a natural language processing model based on machine learning which performs cognitive analysis for cybersecurity-related documents. A domain ontology was developed using a two-step approach: (1) the symmetry stage and (2) the machine adjustment. The first stage is based on the symmetry between the way humans represent a domain and the way machine learning solutions do. Therefore, the cybersecurity field was initially modeled based on the expertise of cybersecurity professionals. A dictionary of relevant entities was created; the entities were classified into 29 categories and later implemented as classes in a natural language processing model based on machine learning. After running successive performance tests, the ontology was remodeled from 29 to 18 classes. Using the ontology, a natural language processing model based on a supervised learning model was defined. We trained the model using sets of approximately 300,000 words. Remarkably, our model obtained an F1 score of 0.81 for named entity recognition and 0.58 for relation extraction, showing superior results compared to other similar models identified in the literature. Furthermore, in order to be easily used and tested, a web application that integrates our model as the core component was developed.


Author(s):  
Yue Yuan ◽  
Xiaofei Zhou ◽  
Shirui Pan ◽  
Qiannan Zhu ◽  
Zeliang Song ◽  
...  

Joint extraction of entities and relations is an important task in natural language processing (NLP), which aims to capture all relational triplets from plain texts. This is a big challenge due to some of the triplets extracted from one sentence may have overlapping entities. Most existing methods perform entity recognition followed by relation detection between every possible entity pairs, which usually suffers from numerous redundant operations. In this paper, we propose a relation-specific attention network (RSAN) to handle the issue. Our RSAN utilizes relation-aware attention mechanism to construct specific sentence representations for each relation, and then performs sequence labeling to extract its corresponding head and tail entities. Experiments on two public datasets show that our model can effectively extract overlapping triplets and achieve state-of-the-art performance.


2018 ◽  
Vol 27 (01) ◽  
pp. 184-192 ◽  
Author(s):  
Michele Filannino ◽  
Özlem Uzuner

Objectives: To review the latest scientific challenges organized in clinical Natural Language Processing (NLP) by highlighting the tasks, the most effective methodologies used, the data, and the sharing strategies. Methods: We harvested the literature by using Google Scholar and PubMed Central to retrieve all shared tasks organized since 2015 on clinical NLP problems on English data. Results: We surveyed 17 shared tasks. We grouped the data into four types (synthetic, drug labels, social data, and clinical data) which are correlated with size and sensitivity. We found named entity recognition and classification to be the most common tasks. Most of the methods used to tackle the shared tasks have been data-driven. There is homogeneity in the methods used to tackle the named entity recognition tasks, while more diverse solutions are investigated for relation extraction, multi-class classification, and information retrieval problems. Conclusions: There is a clear trend in using data-driven methods to tackle problems in clinical NLP. The availability of more and varied data from different institutions will undoubtedly lead to bigger advances in the field, for the benefit of healthcare as a whole.


2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
George Mastorakos ◽  
Aditya Khurana ◽  
Ming Huang ◽  
Sunyang Fu ◽  
Ahmad P. Tafti ◽  
...  

Background. Patients increasingly use asynchronous communication platforms to converse with care teams. Natural language processing (NLP) to classify content and automate triage of these messages has great potential to enhance clinical efficiency. We characterize the contents of a corpus of portal messages generated by patients using NLP methods. We aim to demonstrate descriptive analyses of patient text that can contribute to the development of future sophisticated NLP applications. Methods. We collected approximately 3,000 portal messages from the cardiology, dermatology, and gastroenterology departments at Mayo Clinic. After labeling these messages as either Active Symptom, Logistical, Prescription, or Update, we used NER (named entity recognition) to identify medical concepts based on the UMLS library. We hierarchically analyzed the distribution of these messages in terms of departments, message types, medical concepts, and keywords therewithin. Results. Active Symptom and Logistical content types comprised approximately 67% of the message cohort. The “Findings” medical concept had the largest number of keywords across all groupings of content types and departments. “Anatomical Sites” and “Disorders” keywords were more prevalent in Active Symptom messages, while “Drugs” keywords were most prevalent in Prescription messages. Logistical messages tended to have the lower proportions of “Anatomical Sites,”, “Disorders,”, “Drugs,”, and “Findings” keywords when compared to other message content types. Conclusions. This descriptive corpus analysis sheds light on the content and foci of portal messages. The insight into the content and differences among message themes can inform the development of more robust NLP models.


2019 ◽  
Author(s):  
Auss Abbood ◽  
Alexander Ullrich ◽  
Rüdiger Busche ◽  
Stéphane Ghozzi

AbstractAccording to the World Health Organization (WHO), around 60% of all outbreaks are detected using informal sources. In many public health institutes, including the WHO and the Robert Koch Institute (RKI), dedicated groups of epidemiologists sift through numerous articles and newsletters to detect relevant events. This media screening is one important part of event-based surveillance (EBS). Reading the articles, discussing their relevance, and putting key information into a database is a time-consuming process. To support EBS, but also to gain insights into what makes an article and the event it describes relevant, we developed a natural-language-processing framework for automated information extraction and relevance scoring. First, we scraped relevant sources for EBS as done at RKI (WHO Disease Outbreak News and ProMED) and automatically extracted the articles’ key data: disease, country, date, and confirmed-case count. For this, we performed named entity recognition in two steps: EpiTator, an open-source epidemiological annotation tool, suggested many different possibilities for each. We trained a naive Bayes classifier to find the single most likely one using RKI’s EBS database as labels. Then, for relevance scoring, we defined two classes to which any article might belong: The article is relevant if it is in the EBS database and irrelevant otherwise. We compared the performance of different classifiers, using document and word embeddings. Two of the tested algorithms stood out: The multilayer perceptron performed best overall, with a precision of 0.19, recall of 0.50, specificity of 0.89, F1 of 0.28, and the highest tested index balanced accuracy of 0.46. The support-vector machine, on the other hand, had the highest recall (0.88) which can be of higher interest for epidemiologists. Finally, we integrated these functionalities into a web application called EventEpi where relevant sources are automatically analyzed and put into a database. The user can also provide any URL or text, that will be analyzed in the same way and added to the database. Each of these steps could be improved, in particular with larger labeled datasets and fine-tuning of the learning algorithms. The overall framework, however, works already well and can be used in production, promising improvements in EBS. The source code is publicly available at https://github.com/aauss/EventEpi.


2020 ◽  
Vol 6 ◽  
Author(s):  
David Owen ◽  
Laurence Livermore ◽  
Quentin Groom ◽  
Alex Hardisty ◽  
Thijs Leegwater ◽  
...  

We describe an effective approach to automated text digitisation with respect to natural history specimen labels. These labels contain much useful data about the specimen including its collector, country of origin, and collection date. Our approach to automatically extracting these data takes the form of a pipeline. Recommendations are made for the pipeline's component parts based on some of the state-of-the-art technologies. Optical Character Recognition (OCR) can be used to digitise text on images of specimens. However, recognising text quickly and accurately from these images can be a challenge for OCR. We show that OCR performance can be improved by prior segmentation of specimen images into their component parts. This ensures that only text-bearing labels are submitted for OCR processing as opposed to whole specimen images, which inevitably contain non-textual information that may lead to false positive readings. In our testing Tesseract OCR version 4.0.0 offers promising text recognition accuracy with segmented images. Not all the text on specimen labels is printed. Handwritten text varies much more and does not conform to standard shapes and sizes of individual characters, which poses an additional challenge for OCR. Recently, deep learning has allowed for significant advances in this area. Google's Cloud Vision, which is based on deep learning, is trained on large-scale datasets, and is shown to be quite adept at this task. This may take us some way towards negating the need for humans to routinely transcribe handwritten text. Determining the countries and collectors of specimens has been the goal of previous automated text digitisation research activities. Our approach also focuses on these two pieces of information. An area of Natural Language Processing (NLP) known as Named Entity Recognition (NER) has matured enough to semi-automate this task. Our experiments demonstrated that existing approaches can accurately recognise location and person names within the text extracted from segmented images via Tesseract version 4.0.0. Potentially, NER could be used in conjunction with other online services, such as those of the Biodiversity Heritage Library to map the named entities to entities in the biodiversity literature (https://www.biodiversitylibrary.org/docs/api3.html). We have highlighted the main recommendations for potential pipeline components. The document also provides guidance on selecting appropriate software solutions. These include automatic language identification, terminology extraction, and integrating all pipeline components into a scientific workflow to automate the overall digitisation process.


Sign in / Sign up

Export Citation Format

Share Document