A Survey

2019 ◽  
Vol 13 (1) ◽  
pp. 86-105 ◽  
Author(s):  
Sarika Choudhary ◽  
Nishtha Kesswani

The latest buzzword in internet technology nowadays is the Internet of Things. The Internet of Things (IoT) is an ever-growing network which will transform real-world objects into smart or intelligent virtual objects. IoT is a heterogeneous network in which devices with different protocols can connect with each other in order to exchange information. These days, human life depends upon the smart things and their activities. Therefore, implementing protected communications in the IoT network is a challenge. Since the IoT network is secured with authentication and encryption, but not secured against cyber-attacks, an Intrusion Detection System is needed. This research article focuses on IoT introduction, architecture, technologies, attacks and IDS. The main objective of this article is to provide a general idea of the Internet of Things, various intrusion detection techniques, and security attacks associated with IoT.

2021 ◽  
Vol 21 (3) ◽  
pp. 1-22
Author(s):  
Celestine Iwendi ◽  
Saif Ur Rehman ◽  
Abdul Rehman Javed ◽  
Suleman Khan ◽  
Gautam Srivastava

In this digital age, human dependency on technology in various fields has been increasing tremendously. Torrential amounts of different electronic products are being manufactured daily for everyday use. With this advancement in the world of Internet technology, cybersecurity of software and hardware systems are now prerequisites for major business’ operations. Every technology on the market has multiple vulnerabilities that are exploited by hackers and cyber-criminals daily to manipulate data sometimes for malicious purposes. In any system, the Intrusion Detection System (IDS) is a fundamental component for ensuring the security of devices from digital attacks. Recognition of new developing digital threats is getting harder for existing IDS. Furthermore, advanced frameworks are required for IDS to function both efficiently and effectively. The commonly observed cyber-attacks in the business domain include minor attacks used for stealing private data. This article presents a deep learning methodology for detecting cyber-attacks on the Internet of Things using a Long Short Term Networks classifier. Our extensive experimental testing show an Accuracy of 99.09%, F1-score of 99.46%, and Recall of 99.51%, respectively. A detailed metric representing our results in tabular form was used to compare how our model was better than other state-of-the-art models in detecting cyber-attacks with proficiency.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1977 ◽  
Author(s):  
Geethapriya Thamilarasu ◽  
Shiven Chawla

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Poria Pirozmand ◽  
Mohsen Angoraj Ghafary ◽  
Safieh Siadat ◽  
Jiankang Ren

The Internet of Things is an emerging technology that integrates the Internet and physical smart objects. This technology currently is used in many areas of human life, including education, agriculture, medicine, military and industrial processes, and trade. Integrating real-world objects with the Internet can pose security threats to many of our day-to-day activities. Intrusion detection systems (IDS) can be used in this technology as one of the security methods. In intrusion detection systems, early and correct detection (with high accuracy) of intrusions is considered very important. In this research, game theory is used to develop the performance of intrusion detection systems. In the proposed method, the attacker infiltration mode and the behavior of the intrusion detection system as a two-player and nonparticipatory dynamic game are completely analyzed and Nash equilibrium solution is used to create specific subgames. During the simulation performed using MATLAB software, various parameters were examined using the definitions of game theory and Nash equilibrium to extract the parameters that had the most accurate detection results. The results obtained from the simulation of the proposed method showed that the use of intrusion detection systems in the Internet of Things based on cloud-fog can be very effective in identifying attacks with the least amount of errors in this network.


Author(s):  
Kamal Alieyan ◽  
Ammar Almomani ◽  
Rosni Abdullah ◽  
Badr Almutairi ◽  
Mohammad Alauthman

In today's internet world the internet of things (IoT) is becoming the most significant and developing technology. The primary goal behind the IoT is enabling more secure existence along with the improvement of risks at various life levels. With the arrival of IoT botnets, the perspective towards IoT products has transformed from enhanced living enabler into the internet of vulnerabilities for cybercriminals. Of all the several types of malware, botnet is considered as really a serious risk that often happens in cybercrimes and cyber-attacks. Botnet performs some predefined jobs and that too in some automated fashion. These attacks mostly occur in situations like phishing against any critical targets. Files sharing channel information are moved to DDoS attacks. IoT botnets have subjected two distinct problems, firstly, on the public internet. Most of the IoT devices are easily accessible. Secondly, in the architecture of most of the IoT units, security is usually a reconsideration. This particular chapter discusses IoT, botnet in IoT, and various botnet detection techniques available in IoT.


Author(s):  
Kamal Alieyan ◽  
Ammar Almomani ◽  
Rosni Abdullah ◽  
Badr Almutairi ◽  
Mohammad Alauthman

In today's internet world the internet of things (IoT) is becoming the most significant and developing technology. The primary goal behind the IoT is enabling more secure existence along with the improvement of risks at various life levels. With the arrival of IoT botnets, the perspective towards IoT products has transformed from enhanced living enabler into the internet of vulnerabilities for cybercriminals. Of all the several types of malware, botnet is considered as really a serious risk that often happens in cybercrimes and cyber-attacks. Botnet performs some predefined jobs and that too in some automated fashion. These attacks mostly occur in situations like phishing against any critical targets. Files sharing channel information are moved to DDoS attacks. IoT botnets have subjected two distinct problems, firstly, on the public internet. Most of the IoT devices are easily accessible. Secondly, in the architecture of most of the IoT units, security is usually a reconsideration. This particular chapter discusses IoT, botnet in IoT, and various botnet detection techniques available in IoT.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1011
Author(s):  
Ahmed Adnan ◽  
Abdullah Muhammed ◽  
Abdul Azim Abd Ghani ◽  
Azizol Abdullah ◽  
Fahrul Hakim

An intrusion detection system (IDS) is an active research topic and is regarded as one of the important applications of machine learning. An IDS is a classifier that predicts the class of input records associated with certain types of attacks. In this article, we present a review of IDSs from the perspective of machine learning. We present the three main challenges of an IDS, in general, and of an IDS for the Internet of Things (IoT), in particular, namely concept drift, high dimensionality, and computational complexity. Studies on solving each challenge and the direction of ongoing research are addressed. In addition, in this paper, we dedicate a separate section for presenting datasets of an IDS. In particular, three main datasets, namely KDD99, NSL, and Kyoto, are presented. This article concludes that three elements of concept drift, high-dimensional awareness, and computational awareness that are symmetric in their effect and need to be addressed in the neural network (NN)-based model for an IDS in the IoT.


2021 ◽  
Vol 23 (2) ◽  
pp. 58-64
Author(s):  
Tanzila Saba ◽  
Tariq Sadad ◽  
Amjad Rehman ◽  
Zahid Mehmood ◽  
Qaisar Javaid

Sign in / Sign up

Export Citation Format

Share Document