Optimization of the Wireless Sensor Nodes Localization Algorithm Based on Genetic Algorithm

Author(s):  
Tan Zhi ◽  
Zhang Yuting

The node localization technology is a foundation for practical application in wireless sensor networks. According to DV-HOP positioning algorithm in wireless sensor network low precision, the defect of inaccurate positioning, this paper presents an optimization algorithm of improved DV-HOP based on genetic algorithm. The algorithm is to redefine the scope of initial population, the reference weight, redesigned the fitness function and selection of anchor nodes. The simulation results show that compared with the traditional DV - HOP algorithm, the algorithm without any increase in the node hardware overhead on the basis of significantly higher positioning accuracy.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaogang Qi ◽  
Xiaoke Liu ◽  
Lifang Liu

Wireless sensor networks (WSNs) are widely used in various fields to monitor and track various targets by gathering information, such as vehicle tracking and environment and health monitoring. The information gathered by the sensor nodes becomes meaningful only if it is known where it was collected from. Considering that multilateral algorithm and MDS algorithm can locate the position of each node, we proposed a localization algorithm combining the merits of these two approaches, which is called MA-MDS, to reduce the accumulation of errors in the process of multilateral positioning algorithm and improve the nodes’ positioning accuracy in WSNs. It works in more robust fashion for noise sparse networks, even with less number of anchor nodes. In the MDS positioning phase of this algorithm, the Prussian Analysis algorithm is used to obtain more accurate coordinate transformation. Through extensive simulations and the repeatable experiments under diverse representative networks, it can be confirmed that the proposed algorithm is more accurate and more efficient than the state-of-the-art algorithms.


2013 ◽  
Vol 756-759 ◽  
pp. 3562-3567
Author(s):  
Qing Zhang Chen ◽  
Yun Feng Ni ◽  
Xing Hua Li ◽  
Rong Jie Wu ◽  
Yan Jing Lei ◽  
...  

Wireless sensor node's localization is a funda-mental technology in Wireless Sensor Networks. There are only quite a few study on three-dimensional (3D) localization which is suffered in slow progress, actually, is one of the main difficulties in WSN localization. Based on the study of the existing two-dimensional positioning algorithm and the application of terrain modeling, localization algorithm for sensor nodes in (3D) condition has been focus on as well as the application of terrain model. Using the idea proposed by representative algorithm--APS multi-hop AOA (Angle of Arrival), this paper proposed a new algorithm named Multi-hop Three Dimensional AOA With Space-based Angle Trans-mission (MSAT3D AOA). Using this technology, target nodes can use information of anchor nodes which are more than one hop away form. This paper also combined MSAT3D AOA algorithm with Delaunay triangulation algorithm for terrain modeling.


2010 ◽  
Vol 44-47 ◽  
pp. 3932-3936
Author(s):  
Liang Tao ◽  
Shuai Xu ◽  
Hai Yong Chen ◽  
He Xu Xun

Wireless sensor networks, which are energy limited, low hardware configuration and proneness to invalidation, puts a high demand on the positioning algorithm. Therefore the improved multidimensional scaling (IMDS) algorithm is proposed. In IMDS, firstly, local positioning areas (LPA) are established by an adaptive search algorithm. So the centralized multidimensional scaling (MDS) algorithm is changed into a distributed one. Then the shortest path distances between nodes on LPA are corrected with the geometric correction method (GCM) and adjusting weight correction method (AWCM). The distances between nodes become more accurate. Finally, with information of the public nodes of LPA and anchor nodes, we get the wireless sensor nodes coordinates through coordinate transformation by the SMACOF algorithm and the classical MDS algorithm.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2991 ◽  
Author(s):  
Jingyu Hua ◽  
Yejia Yin ◽  
Weidang Lu ◽  
Yu Zhang ◽  
Feng Li

The problem of target localization in WSN (wireless sensor network) has received much attention in recent years. However, the performance of traditional localization algorithms will drastically degrade in the non-line of sight (NLOS) environment. Moreover, variable methods have been presented to address this issue, such as the optimization-based method and the NLOS modeling method. The former produces a higher complexity and the latter is sensitive to the propagating environment. Therefore, this paper puts forward a simple NLOS identification and localization algorithm based on the residual analysis, where at least two line-of-sight (LOS) propagating anchor nodes (AN) are required. First, all ANs are grouped into several subgroups, and each subgroup can get intermediate position estimates of target node through traditional localization algorithms. Then, the AN with an NLOS propagation, namely NLOS-AN, can be identified by the threshold based hypothesis test, where the test variable, i.e., the localization residual, is computed according to the intermediate position estimations. Finally, the position of target node can be estimated by only using ANs under line of sight (LOS) propagations. Simulation results show that the proposed algorithm can successfully identify the NLOS-AN, by which the following localization produces high accuracy so long as there are no less than two LOS-ANs.


In wireless sensor networks, localization is a way to track the exact location of sensor nodes. Occasionally node localization may not be accurate due to the absence or limitation of anchor nodes. To reduce the mean localization error, soft computing techniques such as BAT and bacterial foraging driven bat algorithm (BDBA) are utilized in literature. For better localization with reduced error, in this paper, firefly driven bat algorithm (FDBA) is proposed, which combines the heuristic of firefly and BAT algorithms. Our proposed FDBA algorithm provides better localization in terms of error of 60% and 40 % less error as compared to BAT and BDBA algorithm, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Sana Messous ◽  
Hend Liouane

One of the main issues of wireless sensor networks is localization. Besides, it is important to track and analyze the sensed information. The technique of localization can calculate node position with the help of a set of designed nodes, denoted as anchors. The set density of these anchors may be incremented or decremented because of many reasons such as maintenance, lifetime, and breakdown. The well-known Distance Vector Hop (DV-Hop) algorithm is a suitable solution for localizing nodes having few neighbor anchors. However, existing DV-Hop-based localization methods have not considered the problem of anchor breakdown which may happen during the localization process. In order to avoid this issue, an Online Sequential DV-Hop algorithm is proposed in this paper to sequentially calculate positions of nodes and improve accuracy of node localization for multihop wireless sensor networks. The algorithm deals with the variation of the number of available anchors in the network. We note that DV-Hop algorithm is used in this article to process localization of nodes by a new optimized method for the estimation of the average distance of hops between nodes. Our proposed localization method is based on an online sequential computation. Compared with the original DV-Hop and other localization methods from the literature, simulation results prove that the proposed algorithm greatly minimizes the average of localization error of sensor nodes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiang Minlan ◽  
Luo Jingyuan ◽  
Zou Xiaokang

This paper proposes a three-dimensional wireless sensor networks node localization algorithm based on multidimensional scaling anchor nodes, which is used to realize the absolute positioning of unknown nodes by using the distance between the anchor nodes and the nodes. The core of the proposed localization algorithm is a kind of repeated optimization method based on anchor nodes which is derived from STRESS formula. The algorithm employs the Tunneling Method to solve the local minimum problem in repeated optimization, which improves the accuracy of the optimization results. The simulation results validate the effectiveness of the algorithm. Random distribution of three-dimensional wireless sensor network nodes can be accurately positioned. The results satisfy the high precision and stability requirements in three-dimensional space node location.


2013 ◽  
Vol 475-476 ◽  
pp. 579-582 ◽  
Author(s):  
Dong Yao Zou ◽  
Teng Fei Han ◽  
Dao Li Zheng ◽  
He Lv

The node localization is one of the key technologies in wireless sensor networks. To the accurate positioning of the nodes as the premise and foundation, this paper presents a centroid localization algorithm based on Cellular network. First, the anchor nodes are distributed in a regular hexagonal cellular network. Unknown nodes collect the RSSI of the unknown nodes nearby, then select the anchor nodes whose RSSI is above the threshold. Finally, the average of these anchor nodes coordinates is the positioning results. MATLAB simulation results show that localization algorithm is simple and effective, it applies to the need for hardware is relatively low.


Author(s):  
Xin Qiao ◽  
Fei Chang ◽  
Jing Ling

In order to solve the problem that the DV-Hop localization algorithm has large errors in the wireless sensor network environment, this paper uses the minimum mean square criterion to determine the average hop distance of anchor nodes, and then calculates the mean value of the original average hop distance, which ensures that the improved average hop distance is closer to the real average hop distance of the whole network. The estimated distances between nodes are calculated by using the correction value corresponding to the average jump distance of the anchor node; in the positioning stage, when the anchor node is small, the estimated coordinates of unknown nodes are obtained by the minimum-maximum method; when the number of anchor nodes is large, the coordinates of unknown nodes are calculated by the maximum likelihood estimation method; this not only reduces the amount of calculation, but also the accuracy is more stable. This step is not only suitable for DV-Hop algorithm, but also can be used to estimate the coordinates when the distance between the unknown node and the anchor node is known. However, this improved method is only applicable to the premise that the simulation area is not large, so this improvement has its scope of adaptation, according to the needs of choice. Finally, the unknown node coordinates are iteratively optimized by using the quasi Newton method. Simulation results show that the proposed positioning algorithm has higher accuracy and better stability.


2012 ◽  
Vol 490-495 ◽  
pp. 1207-1211
Author(s):  
Nan Zhang ◽  
Jian Hua Zhang ◽  
Jian Ying Chen ◽  
Xiao Mei Qu

Node localization technology is the premise and foundation of all applications in wireless sensor network. An improved DV-Hop algorithm was proposed aimed at the low-power requirement of wireless sensor networks. The distances between nodes and anchor nodes were used to calculate the node location in DV-Hop algorithm, and the immune algorithm was used to optimize the estimated location in the third stage of DV-Hop algorithm. The improved algorithm does not require additional hardware devices, and has smaller additional amount of communication and computation.


Sign in / Sign up

Export Citation Format

Share Document