A Heuristic Approach for GPS-Based Routing

Author(s):  
Larry J. LeBlanc ◽  
Thomas A. Grossman

Vehicle routing (such as for package delivery) presents challenges for operations planning and operations control. Planning ensures that vehicles are assigned to “good” routes, and control enables routes to be changed in real time in response to changes in destination requirements. Both planning and control can be accomplished using web-based, intelligent geographic information system tools to rapidly generate a heuristic solution using an embedded algorithm, rather than the established approach of using explicit customized optimization models. The authors contrast the established approach of using customized integer optimization models to a heuristic that integrates human judgment with Google Maps travel time data to solve vehicle routing problems. This paper discusses the data requirements, simplifying assumptions, and practical performance of both approaches. The advantage of the heuristic approach is that genuine, useful access to much of the power of highly sophisticated OR network models can be provided to large numbers of analytically unsophisticated managers, along with enhanced operational control.

2020 ◽  
Vol 2020 (3) ◽  
pp. 60408-1-60408-10
Author(s):  
Kenly Maldonado ◽  
Steve Simske

The principal objective of this research is to create a system that is quickly deployable, scalable, adaptable, and intelligent and provides cost-effective surveillance, both locally and globally. The intelligent surveillance system should be capable of rapid implementation to track (monitor) sensitive materials, i.e., radioactive or weapons stockpiles and person(s) within rooms, buildings, and/or areas in order to predict potential incidents proactively (versus reactively) through intelligence, locally and globally. The system will incorporate a combination of electronic systems that include commercial and modifiable off-the-shelf microcomputers to create a microcomputer cluster which acts as a mini supercomputer which leverages real-time data feed if a potential threat is present. Through programming, software, and intelligence (artificial intelligence, machine learning, and neural networks), the system should be capable of monitoring, tracking, and warning (communicating) the system observer operations (command and control) within a few minutes when sensitive materials are at potential risk for loss. The potential customer is government agencies looking to control sensitive materials and/or items in developing world markets intelligently, economically, and quickly.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2398
Author(s):  
Asterios Leonidis ◽  
Maria Korozi ◽  
Eirini Sykianaki ◽  
Eleni Tsolakou ◽  
Vasilios Kouroumalis ◽  
...  

High stress levels and sleep deprivation may cause several mental or physical health issues, such as depression, impaired memory, decreased motivation, obesity, etc. The COVID-19 pandemic has produced unprecedented changes in our lives, generating significant stress, and worries about health, social isolation, employment, and finances. To this end, nowadays more than ever, it is crucial to deliver solutions that can help people to manage and control their stress, as well as to reduce sleep disturbances, so as to improve their health and overall quality of life. Technology, and in particular Ambient Intelligence Environments, can help towards that direction, when considering that they are able to understand the needs of their users, identify their behavior, learn their preferences, and act and react in their interest. This work presents two systems that have been designed and developed in the context of an Intelligent Home, namely CaLmi and HypnOS, which aim to assist users that struggle with stress and poor sleep quality, respectively. Both of the systems rely on real-time data collected by wearable devices, as well as contextual information retrieved from the ambient facilities of the Intelligent Home, so as to offer appropriate pervasive relaxation programs (CaLmi) or provide personalized insights regarding sleep hygiene (HypnOS) to the residents. This article will describe the design process that was followed, the functionality of both systems, the results of the user studies that were conducted for the evaluation of their end-user applications, and a discussion about future plans.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


2021 ◽  
pp. 43-58
Author(s):  
S. S. Yudachev ◽  
P. A. Monakhov ◽  
N. A. Gordienko

This article describes an attempt to create open source LabVIEW software, equivalent to data collection and control software. The proposed solution uses GNU Radio, OpenCV, Scilab, Xcos, and Comedi in Linux. GNU Radio provides a user-friendly graphical interface. Also, GNU Radio is a software-defined radio that conducts experiments in practice using software rather than the usual hardware implementation. Blocks for data propagation, code deletion with and without code tracking are created using the zero correlation zone code (ZCZ, a combination of ternary codes equal to 1, 0, and –1, which is specified in the program). Unlike MATLAB Simulink, GNU Radio is open source, i. e. free, and the concepts can be easily accessed by ordinary people without much programming experience using pre-written blocks. Calculations can be performed using OpenCV or Scilab and Xcos. Xcos is an application that is part of the Scilab mathematical modeling system, and it provides developers with the ability to design systems in the field of mechanics, hydraulics and electronics, as well as queuing systems. Xcos is a graphical interactive environment based on block modeling. The application is designed to solve problems of dynamic and situational modeling of systems, processes, devices, as well as testing and analyzing these systems. In this case, the modeled object (a system, device or process) is represented graphically by its functional parametric block diagram, which includes blocks of system elements and connections between them. The device drivers listed in Comedi are used for real-time data access. We also present an improved PyGTK-based graphical user interface for GNU Radio. English version of the article is available at URL: https://panor.ru/articles/industry-40-digital-technology-for-data-collection-and-management/65216.html


Author(s):  
Sachin S Junnarkar ◽  
Jack Fried ◽  
Sudeepti Southekal ◽  
Jean-Francois Pratte ◽  
Paul O'Connor ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 148-153 ◽  
Author(s):  
Juan Zhou ◽  
Bing Yan Chen ◽  
Meng Ni Zhang ◽  
Ying Ying Tang

Aiming at the management problem of real-time data created while intelligent solar street lamps working, sectional data acquisition and control system based on internet of things is introduced in the paper. Communication protocol with unified form and flexible function is designed in the system, and communication address is composed of sectional address and subsection address. Three-level data structure is built in the polling algorithm to trace real-time state of lamps and to detect malfunction in time, which is suitable for sectional lamps management characteristics. The system reflects necessary statistic data and exception information to remote control centre through GPRS to short interval expend on transmission and procession and save network flow and system energy. The result shows the system brings improved management affection and accords with the idea of energy-saving and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document