Secure-Aware Multipath Routing Using Atom Search Rider Optimization Algorithm in Wireless Sensor Networks

Author(s):  
M. B. Shyjith ◽  
C. P. Maheswaran ◽  
V. K. Reshma

WSN is comprised of sensor nodes that sense the data for various applications. The nodes are employed for transmitting sensed data to BS through intermediate nodes or the cluster heads in multi-hop environment. Erroneous selection of CHs may lead to large energy consumption and thereby degrades system performance. Hence, an effective technique was developed by proposing Rider-ASO for secure-aware multipath routing in the WSN. The proposed routing protocol offers security to the network concerning various trust factors. Initially, cluster head selection is done using RCSO. Then, the trust values of the cluster heads that are selected is computed to ensure security while routing. For the multipath routing, proposed Rider-ASO is developed by combining ASO and ROA. Thus, the proposed algorithm finds multiple secured paths from the source into destination based on selected CHs. The developed Rider-ASO outperformed other methods with minimal delay of 0.009 sec, maximal average residual energy 0.5494 J, maximal PDR of 97.82%, maximal throughput rate of 96.07%, respectively.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Yanan Wang ◽  
Fuxing Song ◽  
Wenyu Zhang

In wireless sensor networks (WSNs), energy-constrained sensor nodes are always deployed in hazardous and inaccessible environments, making energy management a key problem for network design. The mechanism of RNTA (redundant node transmission agents) lacks an updating mechanism for the redundant nodes, causing an unbalanced energy distribution among sensor nodes. This paper presents an energy-balanced mechanism for hierarchical routing (EBM-HR), in which the residual energy of redundant nodes is quantified and made hierarchic, so that the cluster head can dynamically select the redundant node with the highest residual energy grade as a relay to complete the information transmission to the sink node and achieve an intracluster energy balance. In addition, the network is divided into several layers according to the distances between cluster heads and the sink node. Based on the energy consumption of the cluster heads, the sink node will decide to recluster only in a certain layer so as to achieve an intercluster energy balance. Our approach is evaluated by a simulation comparing the LEACH algorithm to the HEED algorithm. The results demonstrate that the BEM-HR mechanism can significantly boost the performance of a network in terms of network lifetime, data transmission quality, and energy balance.


2021 ◽  
Vol 1 (1) ◽  
pp. 70-82
Author(s):  
Amnah A. Saadi ◽  
Osama A. Awad

Wireless Sensor Networks require energy-efficient protocols for communication and data fusion to integrate data and extend the lifetime of the network. An efficient clustering algorithm for sensor nodes will optimize the energy efficiency of  WSNs. However, the clustering process requires additional overhead, such as selection of cluster head, cluster creation, and deployment. This paper prepared a modified ZRP  for mobile WSN  clustering scheme and optimization using ant-lion optimization algorithm and so far named as mobility cluster head fuzzy logic based on the zone routing protocol (ZRP-FMC-ALO). Which proposed fuzzy logic approach based on three descriptors node for the selection of the CH nodes such as, residual energy, the concentration, and the centrality of the node and also exploited the concept of the mobility of the  Base Station (BS) to prolong the life span of a WSN. The performance of the proposed protocol compared with the famous protocol such as LEACH. Using the MATLAB simulator and the result shows that it outperforms in terms of the WSN network lifetime, the average remaining-consuming energy, and the number of a live node.  


Author(s):  
Hadi Raheem Ali ◽  
Hussein Attia Lafta

Energy efficiency represents a fundamental issue in WSNs, since the network lifetime period entirely depends on the energy of sensor nodes, which are usually battery-operated. In this article, an unequal clustering-based routing protocol has been suggested, where parameters of energy, distance, and density are involved in the cluster head election. Besides, the sizes of clusters are unequal according to distance, energy, and density. Furthermore, the cluster heads are not changed every round unless the residual energy reaches a specific threshold of energy. The outcomes of the conducted simulation confirmed that the performance of the suggested protocol achieves improvement in energy efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 627
Author(s):  
Nhat-Tien Nguyen ◽  
Thien T. T. Le ◽  
Huy-Hung Nguyen ◽  
Miroslav Voznak

Underwater wireless sensor networks are currently seeing broad research in various applications for human benefits. Large numbers of sensor nodes are being deployed in rivers and oceans to monitor the underwater environment. In the paper, we propose an energy-efficient clustering multi-hop routing protocol (EECMR) which can balance the energy consumption of these nodes and increase their network lifetime. The network area is divided into layers with regard to the depth level. The data sensed by the nodes are transmitted to a sink via a multi-hop routing path. The cluster head is selected according to the depth of the node and its residual energy. To transmit data from the node to the sink, the cluster head aggregates the data packet of all cluster members and then forwards them to the upper layer of the sink node. The simulation results show that EECMR is effective in terms of network lifetime and the nodes’ energy consumption.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jia Yanfei ◽  
Chen Guangda ◽  
Zhao Liquan

In heterogeneous wireless sensor networks, sensor nodes are randomly distributed in some regions. In some applications, they may be randomly distributed in different regions. Besides, nodes with the same type have almost the same probability to be selected as cluster head. The cluster head will consume much more energy to receive and transmit data than the other nodes. If nodes with little residual energy have been elected as cluster heads, it will affect the efficiency of the network due to its early death. An improved energy-efficient routing protocol is proposed for heterogeneous wireless sensor networks. Firstly, it supposes that the different types of nodes are distributed in different zones. Secondly, by improving the threshold, nodes with large residual energy have a greater possibility of becoming cluster heads. In the end, it designs a mixed data transmission method. The cluster heads of supper nodes and advance nodes directly transmit data to the base station. The normal nodes adopt single hops and multiple hops mixed methods to transmit data. This can minimize the energy of the communication from cluster head to base station. Simulation results show that this algorithm has achieved a longer lifetime for the wireless sensor network than stable election protocol and threshold-sensitive stable election protocol algorithm.


2020 ◽  
Vol 21 (3) ◽  
pp. 555-568
Author(s):  
Anshu Kumar Dwivedi ◽  
A. K. Sharma

The uttermost requirement of the wireless sensor network is prolonged lifetime. Unequal energy degeneration in clustered sensor nodes lead to the premature death of sensor nodes resulting in a lessened lifetime. Most of the proposed protocols primarily choose cluster head on the basis of a random number, which is somewhat discriminating as some nodes which are eligible candidates for cluster head role may be skipped because of this randomness. To rule out this issue, we propose a deterministic novel energy efficient fuzzy logic based clustering protocol (NEEF) which considers primary and secondary factors in fuzzy logic system while selecting cluster heads. After selection of cluster heads, non-cluster head nodes use fuzzy logic for prudent selection of their cluster head for cluster formation. NEEF is simulated and compared with two recent state of the art protocols, namely SCHFTL and DFCR under two scenarios. Simulation results unveil better performance by balancing the load and improvement in terms of stability period, packets forwarded to the base station, improved average energy and extended lifetime.


2014 ◽  
Vol 472 ◽  
pp. 460-465 ◽  
Author(s):  
Jie Yu Wu ◽  
Xin Yu Shao ◽  
Hai Ping Zhu

A wireless sensor network (WSN) is a large collection of sensor nodes with limited power supply and constrained computational capability. Clustering routing method in wireless sensor networks has been considered as an important field of research recently to prolong the network lifetime of WSNs. We present a novel clustering method that can balance the energy consumption and extend the lifetime of WSN. Network nodes can be divided into densely connected subgroups through the algorithm of detecting community structure in complex networks. Moreover, the role of cluster-head is scheduled among the cluster members according to the residual energy of nodes, and then the cluster heads send the data to the sink directly. Based on the community clustering strategy, a novel routing protocol, called community structure clustering routing protocol (CSCR), has been raised for WSN. Performance evaluation has shown that the proposed method can achieve improvement compared with LEACH and SEP.


Nowadays, Wireless Sensor Network is the promising and booming technology used in a variety of applications like disaster monitoring, health care, environmental monitoring, agriculture, industrial automation, etc. However the main drawback of the wireless sensor network is the limited energy source of the sensor nodes. Consequently, efficient utilization of the energy becomes essential for increasing the lifetime of network. Clustering protocol is one of the best energy efficient approach for saving the energy and maximizing the network lifetime. But the improper selection of cluster heads (CHs) may lead to the death of the CHs which deteriorate the performance of the network. Therefore the proper selection of cluster head becomes important for the energy conservation of sensor nodes and to maximize the lifetime of network. In this paper, we have presented PSO based optimal cluster head selection algorithm, in which the best possible CHs are chosen on the basis of parameters like residual energy, intra-cluster distance, and inter-cluster distance of the sensor node. With the effective scheme of particle encoding and fitness function, the proposed PSO algorithm is implemented for reducing the energy consumption and improving lifetime of network. The proposed algorithm also ensures the uniform distribution of the energy over network, by changing the role of CHs after each round. We extend our research to cluster formation approach where the sensor nodes are joined to the CH on the basis distance and energy of cluster head. The proposed algorithm is simulated extensively under various conditions like number of sensor nodes in the field, number of CHs, the position of the base station, constant energy and random energy, etc. and the simulation results are analyzed with the extant algorithms. Under all the circumstances the proposed algorithm outperforms the existing LEACH and SEP protocols in terms of average residual energy, the network lifetime and number of data packets received by the base station. Because of the improvement in the lifetime of the network, the proposed algorithm can be used in the applications like environmental monitoring, agriculture etc.


2011 ◽  
Vol 8 (4) ◽  
pp. 1051-1071
Author(s):  
Kun-Chan Lan ◽  
Chien-Ming Chou ◽  
Tzu-Nung Wang ◽  
Mei-Wen Li

Body Sensor Networks (BSN) are an emerging application that places sensors on the human body. Given that a BSN is typically powered by a battery, one of the most critical challenges is how to prolong the lifetime of all sensor nodes. Recently, using clusters to reduce the energy consumption of BSN has shown promising results. One of the important parameters in these cluster-based algorithms is the selection of cluster heads (CHs). Most prior works selected CHs either probabilistically or based on nodes? residual energy. In this work, we first discuss the efficiency of cluster-based approaches for saving energy. We then propose a novel cluster head selection algorithm to maximize the lifetime of a BSN for motion detection. Our results show that we can achieve above 90% accuracy for the motion detection, while keeping energy consumption as low as possible.


Sign in / Sign up

Export Citation Format

Share Document