scholarly journals Optimal Cluster Head Selection and Clustering for WSN using PSO

Nowadays, Wireless Sensor Network is the promising and booming technology used in a variety of applications like disaster monitoring, health care, environmental monitoring, agriculture, industrial automation, etc. However the main drawback of the wireless sensor network is the limited energy source of the sensor nodes. Consequently, efficient utilization of the energy becomes essential for increasing the lifetime of network. Clustering protocol is one of the best energy efficient approach for saving the energy and maximizing the network lifetime. But the improper selection of cluster heads (CHs) may lead to the death of the CHs which deteriorate the performance of the network. Therefore the proper selection of cluster head becomes important for the energy conservation of sensor nodes and to maximize the lifetime of network. In this paper, we have presented PSO based optimal cluster head selection algorithm, in which the best possible CHs are chosen on the basis of parameters like residual energy, intra-cluster distance, and inter-cluster distance of the sensor node. With the effective scheme of particle encoding and fitness function, the proposed PSO algorithm is implemented for reducing the energy consumption and improving lifetime of network. The proposed algorithm also ensures the uniform distribution of the energy over network, by changing the role of CHs after each round. We extend our research to cluster formation approach where the sensor nodes are joined to the CH on the basis distance and energy of cluster head. The proposed algorithm is simulated extensively under various conditions like number of sensor nodes in the field, number of CHs, the position of the base station, constant energy and random energy, etc. and the simulation results are analyzed with the extant algorithms. Under all the circumstances the proposed algorithm outperforms the existing LEACH and SEP protocols in terms of average residual energy, the network lifetime and number of data packets received by the base station. Because of the improvement in the lifetime of the network, the proposed algorithm can be used in the applications like environmental monitoring, agriculture etc.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Robust and efficient algorithms for routing and other process for a wireless sensor network are under active development due to technological advancements on wireless transmission systems. Each of the sensor nodes in a wireless sensor network either transmits or forwards the data packets to the base station. The main objective of the majority of the work in the literature is to save the energy consumption efficiently. The cluster based routing mechanism helps to achieve low energy consumption within the network. The network organizes its nodes as a cluster and selects a particular node as cluster head to manage the transmission within and between clusters. The majority of the clustering approach selects the cluster head using a thresholding based approach. Nodes having energy level higher than the threshold are the candidates for the cluster head selection. In the proposed approach the nodes remaining energy and the sum of distance between individual nodes to the cluster head node is considered. Optimal cluster head selection will help to increase the overall life time of the network. The distance between the sensor nodes is estimated using RSSI (Received Signal Strength Indicator) and other parameters measured from the physical layer. Experiments are conducted with simulation environment created with the NS-2 simulator and efficiency of the approach is analyzed in detail.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jasleen Kaur ◽  
Punam Rani ◽  
Brahm Prakash Dahiya

Purpose This paper aim to find optimal cluster head and minimize energy wastage in WSNs. Wireless sensor networks (WSNs) have low power sensor nodes that quickly lose energy. Energy efficiency is most important factor in WSNs, as they incorporate limited sized batteries that would not be recharged or replaced. The energy possessed by the sensor nodes must be optimally used so as to increase the lifespan. The research is proposing hybrid artificial bee colony and glowworm swarm optimization [Hybrid artificial bee colony and glowworm swarm optimization (HABC-GSO)] algorithm to select the cluster heads. Previous research has considered fitness-based glowworm swarm with Fruitfly (FGF) algorithm, but existing research was limited to maximizing network lifetime and energy efficiency. Design/methodology/approach The proposed HABC-GSO algorithm selects global optima and improves convergence ratio. It also performs optimal cluster head selection by balancing between exploitation and exploration phases. The simulation is performed in MATLAB. Findings The HABC-GSO performance is evaluated with existing algorithms such as particle swarm optimization, GSO, Cuckoo Search, Group Search Ant Lion with Levy Flight, Fruitfly Optimization algorithm and grasshopper optimization algorithm, a new FGF in the terms of alive nodes, normalized energy, cluster head distance and delay. Originality/value This research work is original.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


Author(s):  
Vrajesh Kumar Chawra ◽  
Govind P. Gupta

The formation of the unequal clusters of the sensor nodes is a burning research issue in wireless sensor networks (WSN). Energy-hole and non-uniform load assignment are two major issues in most of the existing node clustering schemes. This affects the network lifetime of WSN. Salp optimization-based algorithm is used to solve these problems. The proposed algorithm is used for cluster head selection. The performance of the proposed scheme is compared with the two-node clustering scheme in the term of residual energy, energy consumption, and network lifetime. The results show the proposed scheme outperforms the existing protocols in term of network lifetime under different network configurations.


2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zuo Chen ◽  
Min He ◽  
Wei Liang ◽  
Kai Chen

Wireless sensor network (WSN) is a kind of distributed and self-organizing networks, in which the sensor nodes have limited communication bandwidth, memory, and limited energy. The topology construction of this network is usually vulnerable when attacked by malicious nodes. Besides, excessive energy consumption is a problem that can not be ignored. Therefore, this paper proposes a secure topology protocol of WSN which is trust-aware and of low energy consumption, called TLES. The TLES considers the trust value as an important factor affecting the behavior of node. In detail, the TLES would take trust value, residual energy of the nodes, and node density into consideration when selecting cluster head nodes. Then, TLES constructs these cluster head nodes by choosing the next hop node according to distance to base station (BS), nodes’ degrees, and residual energy, so as to establish a safe, reliable, and energy saving network. Experimental results show that the algorithm can effectively isolate the malicious node in the network and reduce the consumption of energy of the whole network.


Sign in / Sign up

Export Citation Format

Share Document