Modeling of Tool Wear in Turning EN 31 Alloy Steel using Coated Carbide Inserts

Author(s):  
Davinder Sethi ◽  
Vinod Kumar

The experimental investigations of the tool wear in turning of EN 31 alloy steel at different cutting parameters are reported in this paper. Mathematical model has been developed for flank wear using response surface methodology. This mathematical model correlates independent cutting parameters viz. cutting speed, feed rate and depth of cut with dependent parameters of flank wear. This model is capable of estimating the tool wear at different cutting conditions. The central composite design has been used to plan the experiments. Coated carbide inserts have been used for turning EN 31 alloy steel. Results revealed that cutting speed is the most significant factor effecting flank wear, followed by depth of cut and feed rate. Flank wear increases with increase in all the three cutting parameters.

2011 ◽  
Vol 188 ◽  
pp. 410-415 ◽  
Author(s):  
Yuan Wei Wang ◽  
Jian Feng Li ◽  
Z.M. Li ◽  
Tong Chao Ding ◽  
Song Zhang

In this paper, some experiments were conducted to investigate tool wear when end-milling Inconel 718 with the TiAlN-TiN PVD coated carbide inserts. The worn tools were examined thoroughly under scanning electron microscope (SEM) with Energy Dispersive X-ray Spectroscopy and 3D digital microscope to expatiate tool wear morphologies and relevant mechanisms. The flank wear was uniformity in finishing milling process, and the average flank wear were selected as the criterion to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on tool wear. Finally, the optimal combination of the cutting parameters for the desired tool life is obtained.


2011 ◽  
Vol 291-294 ◽  
pp. 794-799 ◽  
Author(s):  
Chakaravarthy Ezilarasan ◽  
Ke Zhu ◽  
A Velayudham ◽  
K. Palanikumar

Nimonic C-263 alloy is extensively used in the field of like aerospace, power generators and heat exchangers due to its higher thermal properties. In this work, an attempt has been made to investigate the effect of the cutting parameters (cutting speed, feed rate & depth of cut) on tool wear (flank wear) in the machining of this alloy with a PVD coated carbide insert. The experiments were conducted using Taguchi’s experimental design. A second order response surface model has been established between the cutting parameters and flank wear using response surface methodology. The predicted optimal value of flank wear for coated carbide is 0.190mm. The results are confirmed by conducting verification experiments.


2010 ◽  
Vol 26-28 ◽  
pp. 1052-1055
Author(s):  
Li Fa Han ◽  
Sheng Guan Qu

The wear characteristics and life of Al2O3/(W,Ti)C ceramic tool in turning NbCp-reinforced iron-based P/M composites was investigated. Experimental results indicate that cutting parameters have an influence on tool wear, among which cutting speed and depth of cut seem to be more prominent. The maximum flank wear rapidly increases as the increase in cutting speed and depth of cut. While, it increases gradually as the decrease in feed rate. Meanwhile, an empirical model of tool life is established, from which the influence of cutting speed and depth of cut on tool life is far greater than that of feed rate. Also from the empirical model, the preferable range of cutting parameters was obtained.


2015 ◽  
Vol 1115 ◽  
pp. 100-103
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Siti Aminatuzzuhriyah B. Haji Subir ◽  
Fawaz Mohsen Abdullah

Chatter is a type of intensive self-excited vibration commonly encountered in machining. It reduces productivity and precision, and is more noticeable in the machining of difficult-to-cut alloys like hardened steel. In such cases chatter causes excessive tool wear, especially flank wear, which in turn affects the stability of the cutting edge leading to premature tool failure, poor surface finish, and unsatisfactory machining performance. Nowadays, however, the demand is for fine finish, high accuracy, and low operation costs. Therefore, any technique which significantly reduces chatter is profitable for the industry. This paper demonstrates the viability and effectiveness of a novel chatter control strategy in the turning of (AISI 304) stainless steel by using permanent bar magnets. Reduction in chatter and corresponding tool flank wear are compared from results for both undamped and magnetically damped turning using coated carbide inserts. Special fixtures and keyway were made from mild steel in order to affix the magnets on the lathe’s carriage. The two ferrite magnets (1500 Gauss each) were placed below and beside the tool shank for damping from Z and X directions, respectively. Response surface methodology (RSM) was used to design the experimental runs in terms of the three primary cutting parameters: cutting speed, feed, and depth of cut. A Kistler 50g accelerometer measured the vibrations. The data was subsequently processed using DasyLab (version 6) software. The tool wear was measured using scanning electron microscope (SEM). Results indicate that this damping setup can reduce vibration amplitude by 47.36% and tool wear by 63.85%, on average. Thus, this technique is a simple and economical way of lowering vibration and tool wear in the turning of stainless steel.


2017 ◽  
Vol 16 (03) ◽  
pp. 237-261 ◽  
Author(s):  
T. Sampath Kumar ◽  
S. Balasivanandha Prabu ◽  
T. Sorna Kumar

In the present work, the performances of TiAlN-, AlCrN- and AlCrN/TiAlN-coated and uncoated tungsten carbide cutting tool inserts are evaluated from the turning studies conducted on EN24 alloy steel workpiece. The output parameters such as cutting forces, surface roughness and tool wear for TiAlN-, AlCrN- and AlCrN/TiAlN-coated carbide cutting tools are compared with uncoated carbide cutting tools (K10). The design of experiment based on Taguchi’s approach is used to obtain the best turning parameters, namely cutting speed ([Formula: see text]), feed rate ([Formula: see text]) and depth of cut ([Formula: see text]), in order to have a better surface finish and minimum tool flank wear. An orthogonal array (L[Formula: see text] was used to conduct the experiments. The results show that the AlCrN/TiAlN-coated cutting tool provided a much better surface finish and minimum tool flank wear. The minimum tool flank wear and minimum surface roughness were obtained using AlCrN/TiAlN-coated tools, when [Formula: see text][Formula: see text]m/min, [Formula: see text][Formula: see text]mm/rev and [Formula: see text][Formula: see text]mm.


2014 ◽  
Vol 592-594 ◽  
pp. 641-646
Author(s):  
R. Thirumalai ◽  
S. Srinivas ◽  
T. Vinodh ◽  
A.L. Kowshik Kumar ◽  
M. Kishore Kumar

The purpose of this research paper is focused on the analysis of optimum cutting conditions to get minimum surface roughness and minimal flank wear in turning SCM 440 alloy steel by Taguchi method. L9orthogonal array is designed to conduct the experiments. Experiments are conducted on supercut 5XL Lathe using coated carbide tool. The process parameters are cutting speed, feed and depth of cut. Surface Roughness and Flank wear are selected as the responses. Surface Roughness is measured using Mitutoyo Surface roughness tester and Flank wear is predicted using SEM images after the experiments. The results are analyzed using analysis of variance (ANOVA) method. The regression equations for the responses are determined and the probability plots are plotted and found satisfactory. The R-squared values are also calculated using analysis of variances and it is found that these values are close to the proximity level and satisfactory. Taguchi method is used to analyze the dominating parameters in minimization of surface roughness and minimization of flank wear.,


2012 ◽  
Vol 565 ◽  
pp. 454-459 ◽  
Author(s):  
Yun Chen ◽  
Huai Zhong Li ◽  
Jun Wang

Titanium alloys are difficult-to-cut materials. This paper presents an experimental study of the effects of different cutting conditions and tool wear on cutting forces in dry milling Ti6Al4V with coated carbide inserts. The experimental results show that the peak forces increase with the increase in the feed rate and depth of cut. With the cutting speed increment in the range from 50 m/min to 150 m/min the peak forces decrease, while at further higher cutting speeds investigated peak forces increase. The decrease of the peak forces is due to thermal softening of the workpiece material and the increase is because of the strain hardening rate of Ti6Al4V. The tool wear experiment reveals that the major tool wear mechanism is the flank wear. The variations of the peak forces are caused by both the tool wear propagation and the thermal effects.


Author(s):  
Shirish Kadam ◽  
Rohit Khake ◽  
Sadaiah Mudigonda

This paper addresses experimental investigations of turning Super Duplex Stainless Steel (DSS) with uncoated and Physical Vapor Deposition PVD coated carbide inserts under dry cutting condition. The parametric influence of cutting speed, feed and depth of cut on the surface finish and machinability aspects such as cutting force and tool wear are studied and conclusions are drawn. The turning parameters considered are cutting speed of 60–360 m/min, feed of 0.05–0.35 mm/rev and depth of cut of 0.5–2 mm. Tool wear was analysed by using an optical microscope and scanning electron microscope. The study includes identification of tool wear mechanism occurring on the flank face. The characterization of the coating was made by Calo test for measurement of coating thickness and nanoindentation for hardness. Comparison of performance of PVD coatings TiAlSiN (3.3μm), AlTiN (3 μm) and AlTiN (7 μm) have been made in terms of tool life. The coatings were produced on P-grade tungsten carbide inserts by using High Power Impulse Magnetron Sputtering (HiPIMS) technology. The findings of the study also provide the economic solution in case of dry turning of super DSS.


2013 ◽  
Vol 701 ◽  
pp. 354-358 ◽  
Author(s):  
Satish Chinchanikar ◽  
S. K. Choudhury ◽  
A. P. Kulkarni

In the present work, effect of work material hardness and cutting parameters on chip-tool interface temperature was investigated during turning of AISI 4340 steel hardened at two different levels of hardness 35 and 45 HRC, respectively, using CVD applied multi-layer TiCN/Al2O3/TiN coated carbide inserts. A tool-work thermocouple principle was used to measure the interface temperature during turning. The correlation coefficient between experimental and predicted values of interface temperature found close to 0.95, which showed that the developed model is reliable and could be used effectively for predicting the interface temperature for the given tool and work material pair and within the domain of the cutting parameters. Experimental observations indicate that the interface temperature is higher for harder work material and get affected mostly by cutting speed followed by feed. However, depth of cut has little influence on interface temperature irrespective of the hardness of the workpiece.


2019 ◽  
Vol 26 (08) ◽  
pp. 1850230
Author(s):  
A. AKHAVAN FARID ◽  
MOHAMMAD LOTFI ◽  
M. JAHANBAKHSH

Long tool life and high material removal rate (MRR) are the two essential requirements in rough cutting of materials. The rapid rate of the flank wear propagation in machining of nickel-based superalloys has induced the utilization of low cutting parameters when the goal was set to maximize the tool life based on the machining time or cutting length. However, this method may not provide an effective rate for the material being cut. This work presents two mathematical models to find the optimum cutting parameters results for the minimum flank wear and maximum MRR. Experimental tests were carried out based on the central composite design (CCD) in rough cutting of Inconel 625 by using TiAlN-coated insert. Maximum flank wear was measured to determine the tool wear propagation. The wear mechanisms which contribute in the tool wear were analyzed by using scanning electron microscope (SEM) to evaluate the effects of cutting parameters on the flank wear propagation. The results showed that cutting speed and depth of cut had the most significant effect on the tool wear. However, optimum cutting condition was achieved by reducing the cutting speed when feed rate and depth of cut maintained at the highest level. This was associated to the interaction of cutting speed and depth of cut, and predominant of abrasion and notching at their highest levels, respectively.


Sign in / Sign up

Export Citation Format

Share Document