Application of Grey Taguchi based Response Surface Methodology (GT-RSM) in Injection Moulding of Polypropylene/E-glass Composite

Author(s):  
M. Santhanakumar ◽  
R. Adalarasan

Strong non-linearity combined with the complicated rheological behaviour of polymers makes the quality characteristics of products unpredictable in plastic injection moulding. The purpose of this work is to study the mechanical properties of injection moulded polypropylene/E-glass composites. The process parameters like the melt temperature, injection pressure, packing pressure and cooling time were found to influence the quality characteristics of the produced parts. These four parameters were varied at three levels and a L18 orthogonal array was used for designing and conducting the experiments. Tensile and impact strength (Charpy-notched) were observed as the responses and a new integrated technique of grey Taguchi based response surface methodology (GT-RSM) was disclosed to predict the optimal operating condition. A confirmation test was conducted to demonstrate the accuracy of GT-RSM approach. Injection and packing pressure were found to have statistical significance in influencing the strength of injection moulded polypropylene/E-glass composites.

2020 ◽  
Vol 841 ◽  
pp. 225-231
Author(s):  
Huei Ruey Ong ◽  
Ifwat Mohd Shah ◽  
Wan Mohd Eqhwan Iskandar ◽  
Md. Maksudur Rahman Khan ◽  
Chi Shein Hong ◽  
...  

Plastic injection moulding is widely used for manufacturing due to variety of plastic product. In this study, plastic part defects such as air bubble and gas mark defect are commonly occurs in thermoplastic part, specifically acrylonitrile butadiene styrene (ABS). In order to optimize the process parameters of injection moulding, design of experiment (DOE) with Response Surface Methodology (RSM) model was used. Process parameters such as melt temperature, mould temperature and injection pressure were selected for the DOE development. The experiments were conducted with melt temperature range from 200 °C to 240 °C, mould temperature from 60 °C to 80 °C and injection pressure from 90 to 99%. The result indicates that, all the selected parameters were significantly influence the rejection rate of the automotive ABS part. The optimum melt temperature, mould temperature and injection pressure were 220 °C, 70 °C and 98% respectively, in obtaining minimum rejection rate.


2014 ◽  
Vol 607 ◽  
pp. 185-192 ◽  
Author(s):  
Chang Hui Liu ◽  
Sun Jin ◽  
Xin Min Lai ◽  
Dong Hong Wang ◽  
Yu Lian Wang

In this paper, the relationship between the shrinkage of the thin-walled wax part in the investment casting process (ICP) and the process parameters including mold temperature, melt temperature, packing pressure and holding time are investigated through a series of experiments. The relationship is successfully described by a mathematical regression model which is based on the response surface methodology (RSM). The rationality and adequacy of the mathematical model are checked via analysis of variation (ANOVA) and a sensitivity analysis for process parameters on the dimensional shrinkage variation are conducted which shows that the contribution percentages of mold temperature, melt temperature, packing pressure and holding time are 23.77%, 43.67%, 11.85% and 16.99%, respectively. Additionally, the optimal setting of the process parameters is also obtained by calculating the desirability function. The optimal combination of the mold temperature, melt temperature, packing pressure, and holding time is 74°C, 30°C 25bar, and 5 sec, respectively.


2018 ◽  
Vol 49 (2) ◽  
pp. 62-81 ◽  
Author(s):  
Shailendra Kumar ◽  
Bhagat Singh

Tool chatter is an unavoidable phenomenon encountered in machining processes. Acquired raw chatter signals are contaminated with various types of ambient noises. Signal processing is an efficient technique to explore chatter as it eliminates unwanted background noise present in the raw signal. In this study, experimentally recorded raw chatter signals have been denoised using wavelet transform in order to eliminate the unwanted noise inclusions. Moreover, effect of machining parameters such as depth of cut ( d), feed rate ( f) and spindle speed ( N) on chatter severity and metal removal rate has been ascertained experimentally. Furthermore, in order to quantify the chatter severity, a new parameter called chatter index has been evaluated considering aforesaid denoised signals. A set of 15 experimental runs have been performed using Box–Behnken design of experiment. These experimental observations have been used to develop mathematical models for chatter index and metal removal rate considering response surface methodology. In order to check the statistical significance of control parameters, analysis of variance has been performed. Furthermore, more experiments are conducted and these results are compared with the theoretical ones in order to validate the developed response surface methodology model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateshwar Reddy Pathapalli ◽  
Meenakshi Reddy Reddigari ◽  
Eswara Kumar Anna ◽  
P. Srinivasa Rao ◽  
D V. Ramana Reddy

PurposeMetal matrix composites (MMC) has been a section which gives an overview of composite materials and owing to those exceptional physical and mechanical properties, particulate-reinforced aluminum MMCs have gained increasing interest in particular engineering applications. Owing to the toughness and abrasive quality of reinforcement components such as silicon carbide (SiC) and titanium carbide (TiC), such materials are categorized as difficult materials for machining. The work aims to develop the model for evaluating the machinability of the materials via the response surface technique by machining three distinct types of hybrid MMCs.Design/methodology/approachThe combined effects of three machining parameters, namely “cutting speed” (s), “feed rate” (f) and “depth of cut” (d), together with three separate composite materials, were evaluated with the help of three performance characteristics, i.e. material removal rate (MRR), cutting force (CF) and surface roughness (SR). Response surface methodology and analysis of variance (ANOVA) both were initially used for analyzing the machining parameters results.FindingsThe contours were developed to observe the combined process parameters along with their correlations. The process variables were concurrently configured using grey relational analysis (GRA) and the composite desirability methodology. Both the GRA and composite desirability approach obtained similar results.Practical implicationsThe results obtained in the present paper will be helpful for decision-makers in manufacturing industries, who work on metal cutting area especially composites, to select the suitable solution by implementing the Grey Taguchi and modeling techniques.Originality/valueThe originality of this research is to identify the suitability of process parameters combination based on the obtained research results. The optimization of machining parameters in turning of hybrid metal matrix composites is carried out with two different methods such as Grey Taguchi and composite desirability approach.


2009 ◽  
Vol 52 (6) ◽  
pp. 1541-1553 ◽  
Author(s):  
Dayane Rosalyn Izidoro ◽  
Agnes de Paula Scheer ◽  
Maria-Rita Sierakowsk

In this work, the rheological behaviour of emulsions (mayonnaises) stabilized by green banana pulp using the response surface methodology was studied. In addition, the emulsions stability was investigated. Five formulations were developed, according to design for constrained surfaces and mixtures, with the proportion, respectively: water/soy oil/green banana pulp: F1 (0.10/0.20/0.70), F2 (0.20/0.20/0.60), F3 (0.10/0.25/0.65), F4 (0.20/0.25/0.55) and F5 (0.15/0.225/0.625) .Emulsions rheological properties were performed with a rotational Haake Rheostress 600 rheometer and a cone and plate geometry sensor (60-mm diameter, 2º cone angle), using a gap distance of 1mm. The emulsions showed pseudoplastic behaviour and were adequately described by the Power Law model. The rheological responses were influenced by the difference in green banana pulp proportions and also by the temperatures (10 and 25ºC). The formulations with high pulp content (F1 and F3) presented higher shear stress and apparent viscosity. Response surface methodology, described by the quadratic model,showed that the consistency coefficient (K) increased with the interaction between green banana pulp and soy oil concentration and the water fraction contributed to the flow behaviour index increase for all emulsions samples. Analysis of variance showed that the second-order model had not significant lack-of-fit and a significant F-value, indicating that quadratic model fitted well into the experimental data. The emulsions that presented better stability were the formulations F4 (0.20/0.25/0.55) and F5 (0.15/0.225/0.625).


Author(s):  
Vikas Sharma ◽  
Vinod Kumar

This article explores the quality characteristics of laser curve cutting of metal matrix aluminium 5052 alloy reinforced with SiC particles. These alloys are extensively used in aerospace industries due to their unique mechanical properties. The response surface methodology has been used to design the mathematical models with respect to input and output characteristics parameters. The desirability function approach has been used to optimize the input parameters like cutting speed, laser power, stand-off distance, nozzle diameter, nitrogen gas pressure, percentage of reinforced SiC particles, arc radius by considering multiple-performance characteristics. The various quality aspects of machined specimens were analysed using optical microscope, scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis techniques. The response surface methodology predicted models were validated by performing various confirmatory experiments. The percentage of error for the dross height, kerf taper and kerf width was found to be 4.62%, 6.55% and 5.04 % which signifies that predicted model is adequate.


Sign in / Sign up

Export Citation Format

Share Document