Improvement in Depth of Weld Penetration During TIG, Activated-TIG, and Pulsed TIG Welding

Author(s):  
Ajitav Sahoo ◽  
Sasmeeta Tripathy

Joining of dissimilar materials has gained a lot of interest in the recent years due to the increased demand of high strength and light weight designs. Fusion welding plays a vital role in repairing and manufacturing industries like automobile, construction, ship building, and energy sector. Tungsten inert gas (TIG) welding is more advantageous over other welding processes as it produces high precision welds with aesthetic appearance. The limitation of the process is shallow penetration, distorted and weaker joint formation, and low productivity. In the present work, a critical review and analysis has been done on weld penetration and its enhancement during TIG, activated flux TIG, and pulsed current TIG welding of steels. The purpose of this review is to raise an insight about using the variants of TIG, minimising the energy consumption and heat affected zone while increasing the weld penetration and productivity. Proper selection of welding parameters along with welding speed, electrode diameter, shielding gas, electrode tip angle, arc gap, and flux greatly increase the weld penetration.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 390
Author(s):  
Cyril Vimalraj ◽  
Paul Kah

To reduce environmental impacts and ensure competitiveness, the fabrication and construction sectors focus on minimizing energy and material usage, which leads to design requirements for complex structures by joining of similar and dissimilar materials. Meeting these industrial demands requires compatible materials with improved properties such as good weight-to-strength ratios, where aluminum (Al) and its alloys are competing candidates for various complex applications. However, joining Al with fusion welding processes leads to joint deterioration. Friction stir welding (FSW) produces joints at temperatures below the melting temperature, thus avoiding flaws associated with high heat input, yet requires improvement in the resultant joint properties. Recent studies have shown that nanoparticle reinforcement in FSW joints can improve weld properties. The main focus of this study is to critically review similar and dissimilar friction stir welding of AA5083 and AA6082 with carbide and oxide nanoparticle reinforcement. The study also discusses the effect of welding parameters on reinforcement particles and the effect of nanoparticle reinforcement on weld microstructure and properties, as well as development trends using nanoparticles in FSW. Analysis shows that friction stir welding parameters have a significant influence on the dispersion of the reinforcement nanoparticles, which contributes to determining the joint properties. Moreover, the distributed nanoparticles aid in grain refinement and improve joint properties. The type, amount and size of reinforcement nanoparticles together with the welding parameters significantly influence the joint properties and microstructures in similar and dissimilar Al welds. However, research is still required to determine the strengthening mechanism used by nanoparticles and to assess other nanoparticle additions in FSW of Al alloys.


2011 ◽  
Vol 409 ◽  
pp. 843-848
Author(s):  
David W. Heard ◽  
Julien Boselli ◽  
Raynald Gauvin ◽  
Mathieu Brochu

Aluminum-lithium (Al-Li) alloys are of interest to the aerospace and aeronautical industries as rising fuel costs and increasing environmental restrictions are promoting reductions in vehicle weight. However, Al-Li alloys suffer from several issues during fusion welding processes including solute segregation and depletion. Solid freeform fabrication (SFF) of materials is a repair or rapid prototyping process, in which the deposited feedstock is built-up via a layering process to the required geometry. Recent developments have led to the investigation of SFF processes via Gas Metal Arc Welding (GMAW) capable of producing functional metallic components. A SFF process via GMAW would be instrumental in reducing costs associated with the production and repair of Al-Li components. Furthermore the newly developed Controlled-Short-Circuit-MIG (CSC-MIG) process provides the ability to control the weld parameters with a high degree of accuracy, thus enabling the optimization of the solidification parameters required to avoid solute depletion and segregation within an Al-Li alloy. The objective of this study is to develop the welding parameters required to avoid lithium depletion and segregation. In the present study weldments were produced via CSC-MIG process, using Al-Li 2199 sheet samples as the filler material. The residual lithium concentration within the weldments was then determined via Atomic Absorption (AA) and X-ray Photoelectron Spectroscopy (XPS). The microstructure was analyzed using High Resolution Scanning Electron Microscopy (HR-SEM). Finally the mechanical properties of welded samples were determined through the application of hardness and tensile testing.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


2010 ◽  
Vol 297-301 ◽  
pp. 221-226 ◽  
Author(s):  
R. Salekrostam ◽  
M.K. Besharati Givi ◽  
P. Asadi ◽  
P. Bahemmat

Compared to the many fusion welding processes that are routinely used for joining stainless steel 316L, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and is being recast. The welding parameters play a major role in deciding the weld quality. In this investigation an attempt has been made to understand the influences of rotational speed and traverse speed of the tool on the microstructure of the friction stir processing zone in stainless steel 316L. Five different tool rotational speeds have been used to fabricate the joints at four different traverse speeds from this investigation which is the optimum for the tool speed and higher or lower amounts of these parameters are not useful for the process.


2011 ◽  
Vol 480-481 ◽  
pp. 527-532 ◽  
Author(s):  
Kuang Hung Tseng ◽  
Hsiang Lin Sung

Activated flux assisted tungsten inert gas (TIG) welding of austenitic 316L stainless steel was investigated. Autogenous TIG welding was used to produce a bead-on-plate weld. The FeO, FeS, and FeF2 were selected as the flux powders. The results showed that the FeS and FeO fluxes produced high aspect ratio welds, while the FeF2 flux produced a relatively low aspect ratio weld. The undercut defect was produced with use of the FeS flux. An experimental result suggested the constriction of arc column as a mechanism in improving activated TIG penetration. In addition, activated TIG process can increase the delta-ferrite content in austenitic stainless steel weld metal.


Author(s):  
Vijay S Gadakh ◽  
Vishvesh J Badheka ◽  
Amrut S Mulay

The dissimilar material joining of aluminum and titanium alloys is recognized as a challenge due to the significant differences in the physical, chemical, and metallurgical properties of these alloys, where the increasing demands for high strength and lightweight alloys in aerospace, defense, and automotive industries. Joining these two alloys using the conventional fusion techniques produces commercially unacceptable sound joints due to irregular, complex weld pool shapes, cracking and low strength, high residual stresses, cracks, and microporosity, and the brittle intermetallic compounds formation leads to poor formability or inferior mechanical properties. The formation of intermetallic compounds is inevitable but it is less severe in solid-state than in the fusion welding process. Hence, this article reviews on aluminum–titanium joining using different solid-state and hybrid joining processes with emphasis on the effect of process parameters of the different processes on the weld microstructure, mechanical properties along with the type of intermetallic compounds and defects formed at the weld interface. Among the various solid-state welding processes for aluminum–titanium joining, the following grades of aluminum and titanium alloys were employed such as cp Ti, Ti6Al4V, cp Al, AA1xxx, AA 2xxx, AA5xxx, AA6xxx, AA7xxx, out of which Ti6Al4V and AA6xxx alloys are the most common combination.


2006 ◽  
Vol 3-4 ◽  
pp. 131-140 ◽  
Author(s):  
William S. Robotham ◽  
Thomas H. Hyde ◽  
Edward J. Williams ◽  
Paul Brown ◽  
Ian R. McColl ◽  
...  

The development of aeroengines with increasing thrust capabilities requires the development of shaft technology to deal with this greater power transmission, whilst still restricting their dimensions and weight. Modern aerospace drive shafts are predominantly of a single-alloy design and significant benefits could be obtained from using a dual alloy shaft, where a high temperature alloy is used at the turbine, i.e. hot, end of the shaft and a high strength alloy is used for the spline end of the shaft, where high strength is required, rather than high temperature performance. Whilst the processes of joining dissimilar materials are widely used the evolution of the joint and its strength characteristics are not fully understood. A program of research has been instigated to lead to an improved understanding of friction welds and their behaviour under monotonic and cyclic loadings with the overall objective to establish confidence in the welding parameters for these material combinations and the associated post-weld heat treatments. This paper presents an overview of the mechanical testing program and the aims of this work, illustrated with some examples from the monotonic and cyclic test work carried out on inertia friction welded dual alloy shaft components.


2016 ◽  
Vol 879 ◽  
pp. 1760-1765 ◽  
Author(s):  
Rahul Sharma ◽  
Uwe Reisgen

The application of high strength steels in welded structures relies on easy to use quality assurance concepts for the welding process. For ferritic steels, one of the most common methods for estimating the mechanical properties of welded joints is the cooling time concept t8/5. Even without experimental determination, the calculation of cooling time with previously introduced formulas based on the welding parameters leads to good results. Because high strength structural steels and weld metals with a yield strength of 960 MPa contain higher quantities of alloying elements, the transformation start temperature Ar3 is found to be outside of the range of 800 °C to 500 °C. This leads to inadequate estimation results, as the thermal arrest caused by the microstructural transformation in this case is not considered. In this work the usage of the well-proven cooling time concept t8/5 is analyzed using high strength fine grained structural steels and suitable welding filler wires during gas metal arc and submerged arc welding processes. The results are discussed taking into account the microstructure and the transformation behavior. Based on the experimental work, an improved concept is presented.


2021 ◽  
pp. 009524432110588
Author(s):  
Mustafa Kemal Bilici

Modern thermoplastic materials are used in an expanding range of engineering applications, such as in the automotive industry, due to their enhanced stress-to-weight ratios, toughness, a very short time of solidification, and a low thermal conductivity. Recently, friction stir welding has started to be used in joining processes in these areas. There are many factors that affect weld performance and weld quality in friction stir welding (FSW). These factors must be compatible with each other. Due to the large number of welding variables in friction stir welding processes, it is very difficult to achieve high strength FSW joints, high welding performance, and control the welding process. Welding variables that form the basis of friction stir welding; machine parameters, tool variables, and material properties are divided into three main groups. Each welding variable has different effects on the weld joint. In this study, friction stir welds were made on high density polyethylene (HDPE) sheets with factors selected from machine parameters and welding tool variables. Although the welding performance, quality, and strength gave good results in some conditions, successful joints could not be realized in some conditions. In particular, welding defects occurring in the combination of HDPE material with FSW were investigated. Welding quality, defects, and performances were examined with macrostructure. In addition, the tensile strength values of some the joints were determined. The main purpose of this study is to determine the welding defects that occur at the joints. The causes of welding defects, prevention methods, and which weld variables caused were investigated. Welding parameters and welding defects caused by welding tools were examined in detail. In addition, the factors causing welding defects were changed in a wide range and the changes in the defects were observed.


Sign in / Sign up

Export Citation Format

Share Document