Energy-Efficient Self-Organizing Routing for Wireless Mobile Networks

Author(s):  
Melody Moh ◽  
Rashmi Kukanur ◽  
Xuquan Lin ◽  
Subhankar Dhar

The instant deployment without relying on an existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for many dynamic situations. An efficient MANET protocol may be applied to other important emerging wireless technologies, such as wireless mesh and sensor networks. This article proposes a hierarchical routing scheme that is scalable, energy efficient, and self-organizing. The new algorithm that is discussed in this article is the Dynamic Leader Set Generation (DLSG). This algorithm dynamically selects leader nodes based on traffic demand, locality, and residual energy level, and de-selects them based on residual energy. Therefore, energy consumption and traffic load are balanced throughout the network, and the network reorganizes itself around the dynamically selected leader nodes. Time, space, and message complexities are formally analyzed and implementation issues are also addressed. Incorporating the IEEE 802.11 medium access control mechanism and including the power saving mode, performance evaluation is carried out by simulating DLSG and four existing hierarchical routing algorithms. It shows that DLSG successfully extends network lifetime by 20 to 50% while achieving a comparable level of network performance.

2012 ◽  
pp. 390-406
Author(s):  
Melody Moh ◽  
Xuquan Lin ◽  
Subhankar Dhar

The instant deployment without relying on an existing infrastructure makes the mobile ad hoc networks (MANET) an attractive choice for many dynamic situations. An efficient MANET protocol may be applied to other important emerging wireless technologies such as wireless mesh and sensor networks. This chapter proposes a hierarchical routing scheme that is scalable, energy-efficient, and self-organizing. This chapter presents a new algorithm: the Dynamic Leader Set Generation (DLSG). This algorithm dynamically selects leader nodes based on traffic demand, locality, and residual energy level, and de-selects them based on residual energy. Therefore, energy consumption and traffic load are distributed throughout the network. The network also reorganizes itself surrounding the dynamically selected leader nodes. Time, space, and message complexities are formally analyzed; implementation issues are also addressed. Incorporating the IEEE 802.11 medium access control mechanism including the power saving mode, performance evaluation is carried out by simulating DLSG and four existing hierarchical routing algorithms. It shows that DLSG successfully extends network lifetime by 20-50% while achieves a comparable level of network performance.


Author(s):  
Melody Moh ◽  
Xuquan Lin ◽  
Subhankar Dhar

The instant deployment without relying on an existing infrastructure makes the mobile ad hoc networks (MANET) an attractive choice for many dynamic situations. An efficient MANET protocol may be applied to other important emerging wireless technologies such as wireless mesh and sensor networks. This chapter proposes a hierarchical routing scheme that is scalable, energy-efficient, and self-organizing. This chapter presents a new algorithm: the Dynamic Leader Set Generation (DLSG). This algorithm dynamically selects leader nodes based on traffic demand, locality, and residual energy level, and de-selects them based on residual energy. Therefore, energy consumption and traffic load are distributed throughout the network. The network also reorganizes itself surrounding the dynamically selected leader nodes. Time, space, and message complexities are formally analyzed; implementation issues are also addressed. Incorporating the IEEE 802.11 medium access control mechanism including the power saving mode, performance evaluation is carried out by simulating DLSG and four existing hierarchical routing algorithms. It shows that DLSG successfully extends network lifetime by 20-50% while achieves a comparable level of network performance.


Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


Wireless Sensor Networks (WSN) is a group of sensor devices, which are used to sense the surroundings. The network performance is still an issue in the WSN and an efficient protocol is introduced such as LEACH. To improve the stability, LEACH with fuzzy descriptors is used in preceding research. However the existing has drawback with effective group formation in heterogeneous WSN and also it is not achieved the Super Leader Node (SLH). To overcome the above mentioned issues, the proposed system enhances the approach which is used for increasing the energy consumption, packet delivery ratio, and bandwidth and network lifetime. The proposed paper contains three phases such as grouping formation, Leader Node (LN) selection, SLN selection with three main objectives:(i) to acquire Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN for grouping formation (ii)To design Low Energy Adaptive Clustering Hierarchy- Expected Residual Energy (LEACH-ERE) protocol for LN selection.(iii)To optimize the SCH selection by Particle Swarm Optimization (PSO) based fuzzy approach. The clustering formation is done by Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN. It is used to calculate the sensor nodes which have shortest distance between each node. The LEACH-ERE protocol was proposed to form a Leader Node (LN) and all the nodes has to communicate with sink through LN only. New SLN is elected based on distance from the sink and battery power of the node.


2014 ◽  
Vol 5 (1) ◽  
pp. 20-45 ◽  
Author(s):  
Sharad Sharma ◽  
Shakti Kumar ◽  
Brahmjit Singh

Wireless Mesh Networks (WMNs) are emerging as evolutionary self organizing networks to provide connectivity to end users. Efficient Routing in WMNs is a highly challenging problem due to existence of stochastically changing network environments. Routing strategies must be dynamically adaptive and evolve in a decentralized, self organizing and fault tolerant way to meet the needs of this changing environment inherent in WMNs. Conventional routing paradigms establishing exact shortest path between a source-terminal node pair perform poorly under the constraints imposed by dynamic network conditions. In this paper, the authors propose an optimal routing approach inspired by the foraging behavior of ants to maximize the network performance while optimizing the network resource utilization. The proposed AntMeshNet algorithm is based upon Ant Colony Optimization (ACO) algorithm; exploiting the foraging behavior of simple biological ants. The paper proposes an Integrated Link Cost (ILC) measure used as link distance between two adjacent nodes. ILC takes into account throughput, delay, jitter of the link and residual energy of the node. Since the relationship between input and output parameters is highly non-linear, fuzzy logic was used to evaluate ILC based upon four inputs. This fuzzy system consists of 81 rules. Routing tables are continuously updated after a predefined interval or after a change in network architecture is detected. This takes care of dynamic environment of WMNs. A large number of trials were conducted for each model. The results have been compared with Adhoc On-demand Distance Vector (AODV) algorithm. The results are found to be far superior to those obtained by AODV algorithm for the same WMN.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sang-Hyun Park ◽  
Seungryong Cho ◽  
Jung-Ryun Lee

In the future network with Internet of Things (IoT), each of the things communicates with the others and acquires information by itself. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose energy-efficient probabilistic routing (EEPR) algorithm, which controls the transmission of the routing request packets stochastically in order to increase the network lifetime and decrease the packet loss under the flooding algorithm. The proposed EEPR algorithm adopts energy-efficient probabilistic control by simultaneously using the residual energy of each node and ETX metric in the context of the typical AODV protocol. In the simulations, we verify that the proposed algorithm has longer network lifetime and consumes the residual energy of each node more evenly when compared with the typical AODV protocol.


Author(s):  
R. Soundarya

Abstract: Wireless sensor networks are widely used due to its usage and advantages because it can utilize in mission critical tasks. One of the major issues in WSN is reliable data delivery without any loss and to increase network lifetime by utilizing energy efficient process. The objective of this work is to increase network lifetime at the same time ensuring high packet delivery ratio. Clustering is one of the best methods to increase network lifetime, however election process of cluster head will consume energy and reduces network performance. Therefore in proposed work, energy efficient cluster based routing protocol has been implemented which includes residual energy and distance as major parameter to form cluster. Cluster head selection will be a static process, once cluster is formed cluster head will be selected through election process after transaction the residual energy in CH will be checked with the threshold value and same CH will again act as head this reduces cluster formation and election process. In addition to provide secure data transaction MD5 algorithm has been implemented. Attack based data loss is also reduced and concentrated in proposed work to achieve objective of this work. Keywords: (SSCHS) Secure static cluster head selection, network lifetime, cluster, MD5 and Static cluster head.


2012 ◽  
Vol 151 ◽  
pp. 583-586
Author(s):  
Shun Fu Jin ◽  
Rong Yu Fan ◽  
Li Chen

In order to improve the energy efficiency and build a green Ethernet, we propose a simple power saving (SPS) scheme with a burst transmission for Energy Efficient Ethernet. In SPS scheme, let the link transfer to the sleep mode as soon as no packets are ready for transmission, whereas let the link return to the awake mode when a fixed number of packets arrive during the sleep mode. We build a vacation queueing model with N strategy to describe the working principle of SPS scheme. By using the method of embedded Markov chain, the formulas of performance measures are given. Finally, numerical results are provided to show the impact of traffic load on system performance.


Sign in / Sign up

Export Citation Format

Share Document