The Research on the Osmotic Stress Gene Mining Model Based on the Arabidopsis Genome

2019 ◽  
Vol 12 (1) ◽  
pp. 117-132
Author(s):  
Xiao Yu ◽  
Xiang Li ◽  
Huihui Deng ◽  
Yuchen Tang ◽  
Zhepeng Hou ◽  
...  

In the field of the bioinformatics, during osmotic stress response genes mining processing, it is also very crucial to verify experimental data obtained in the course of complex experiments by using the computer. Aim of this paper is taking Arabidopsis thaliana as the experimental crop, designing technology roadmap, taking advantage of the skills of function and programming, then designing algorithms. After using the program to predict the transcription start point, the promoter sequence is extracted and simplified. In addition, different alignment methods are classified. Then, comparing the promoter sequence with the cis-element and using the formula for further processing. Finally, get the probability P value, which provide further help to experts and scholars on the basis of probability values to determine the correlation between the osmotic stress. The experimental data source of chromosomal sequences is received from Genbank database files, and cis-element sequence that associated with osmotic stress is collected from TRANSFAC and TRRD database. From this, the authors not only used the Arabidopsis promoter as the experimental data, but also use a variety of eukaryotic promoters include promoters GhNHX1 rice, cotton OsNHX1 promoter, as a comparison. Wherein the data obtained in the biological laboratory, which in the course of running the program, 70% have been verified. P value close to 0.8, this article will be treated as the promoter contains osmotic stress cis-elements, the expression of gene induced by osmotic stress. For thaliana, cotton and rice, programs running average time was 51s, 72s and 114s. Through the use of some commonly used bioinformatics gene mining algorithms, MEME algorithm and BioProspector algorithm for the same data have been processed, the average running time of the system is increasing with the increase of data. Running time of MEME algorithm increases from 60s to reach 198s, BioProspector algorithm increases from 45s to 150s model process used herein were 50s, 75s, 110s, 135s. At the same time, the authors can see in the three algorithms, the model algorithm used herein with respect to the first two more optimized. To ensure the accuracy rate, meanwhile has high speed and stabilization of higher.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1306
Author(s):  
Elsayed Badr ◽  
Sultan Almotairi ◽  
Abdallah El Ghamry

In this paper, we propose a novel blended algorithm that has the advantages of the trisection method and the false position method. Numerical results indicate that the proposed algorithm outperforms the secant, the trisection, the Newton–Raphson, the bisection and the regula falsi methods, as well as the hybrid of the last two methods proposed by Sabharwal, with regard to the number of iterations and the average running time.


2021 ◽  
Author(s):  
Xiaoyan Liang ◽  
Songyu Liu ◽  
Tao Wang ◽  
Fenrong Li ◽  
Jinkui Cheng ◽  
...  

Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Joanna Karcz ◽  
Beata Mackiewicz

AbstractThe effects of baffling of an agitated vessel on the production of floating particles suspension are presented in this paper. Critical agitator speed, needed for particles dispersion in a liquid agitated in a vessel of the inner diameter of 0.295 m, was determined. The just drawdown agitator speeds were defined analogously to the Zwietering criterion. Specific agitation energy was calculated from the power consumption experimental data obtained by means of the strain gauge method. The experiments were carried out for twelve configurations of the baffles differing in number, length and their arrangement in the vessels. The following high-speed impellers were used: up- and downpumping six blade pitched blade turbines, Rushton turbine, and propeller. The impeller was located in the vessel in the height equal to two-thirds or one-third of the vessel diameter from the bottom of the vessel. The results were described in the form of a dimensionless equation.


Author(s):  
Young Hyun Kim ◽  
Eun-Gyu Ha ◽  
Kug Jin Jeon ◽  
Chena Lee ◽  
Sang-Sun Han

Objectives: This study aimed to develop a fully automated human identification method based on a convolutional neural network (CNN) with a large-scale dental panoramic radiograph (DPR) dataset. Methods: In total, 2,760 DPRs from 746 subjects who had 2 to 17 DPRs with various changes in image characteristics due to various dental treatments (tooth extraction, oral surgery, prosthetics, orthodontics, or tooth development) were collected. The test dataset included the latest DPR of each subject (746 images) and the other DPRs (2,014 images) were used for model training. A modified VGG16 model with two fully connected layers was applied for human identification. The proposed model was evaluated with rank-1, –3, and −5 accuracies, running time, and gradient-weighted class activation mapping (Grad-CAM)–applied images. Results: This model had rank-1,–3, and −5 accuracies of 82.84%, 89.14%, and 92.23%, respectively. All rank-1 accuracy values of the proposed model were above 80% regardless of changes in image characteristics. The average running time to train the proposed model was 60.9 sec per epoch, and the prediction time for 746 test DPRs was short (3.2 sec/image). The Grad-CAM technique verified that the model automatically identified humans by focusing on identifiable dental information. Conclusion: The proposed model showed good performance in fully automatic human identification despite differing image characteristics of DPRs acquired from the same patients. Our model is expected to assist in the fast and accurate identification by experts by comparing large amounts of images and proposing identification candidates at high speed.


Author(s):  
Penghao Duan ◽  
Choon S. Tan ◽  
Andrew Scribner ◽  
Anthony Malandra

The measured loss characteristic in a high-speed cascade tunnel of two turbine blades of different designs showed distinctly different trend with exit Mach number ranging from 0.8 to 1.4. Assessments using steady RANS computation of the flow in the two turbine blades, complemented with control volume analyses and loss modelling, elucidate why the measured loss characteristic looks the way it is. The loss model categorizes the total loss in terms of boundary layer loss, trailing edge loss and shock loss; it yields results in good agreement with the experimental data as well as steady RANS computed results. Thus RANS is an adequate tool for determining the loss variations with exit isentropic Mach number and the loss model serves as an effective tool to interpret both the computational and experimental data. The measured loss plateau in Blade 1 for exit Mach number of 1 to 1.4 is due to a balance between a decrease of blade surface boundary layer loss and an increase in the attendant shock loss with Mach number; this plateau is absent in Blade 2 due to a greater rate in shock loss increase than the corresponding decrease in boundary layer loss. For exit Mach number from 0.85 to 1, the higher loss associated with shock system in Blade 1 is due to the larger divergent angle downstream of the throat than that in Blade 2. However when exit Mach number is between 1.00 and 1.30, Blade 2 has higher shock loss. For exit Mach number above around 1.4, the shock loss for the two blades is similar as the flow downstream of the throat is completely supersonic. In the transonic to supersonic flow regime, the turbine design can be tailored to yield a shock pattern the loss of which can be mitigated in near equal amount of that from the boundary layer with increasing exit Mach number, hence yielding a loss plateau in transonic-supersonic regime.


2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


2011 ◽  
Vol 291-294 ◽  
pp. 710-714
Author(s):  
Jun Min Xiao ◽  
Ying Xu

Mold steel 3Cr2Mo has been used widely in manufacturing of plastic mold formed parts, owing to fine mechanical properties. However, it is also very difficult to cut mold formed parts of steel 3Cr2Mo due to high hardness. Ordinary NC cutting method of steel 3Cr2Mo is unable to relate to modern mold manufacturing due to bad cutting property, so it is extremely significant for improving cutting property of steel 3Cr2Mo to study the high speed milling technology. On the basis of improving the traditional cutting force formula, the mathematical model of high speed milling force for steel 3Cr2Mo was derived and solved by using the experimental data and constructing matrix equation based on MATLAB software. Comparing with experimental data, the error of mathematical model of high speed milling force could be controlled within 6 percent. Due to high precision the model of high speed milling force can meet practical engineering requirement and has great value in the fields of CAD/CAM/CAE.


2022 ◽  
Vol 11 (1) ◽  
pp. 261
Author(s):  
Agnieszka Boszczyk ◽  
Henryk Kasprzak ◽  
Joanna Przeździecka-Dołyk

Background: The process of rapid propagation of the corneal deformation in air puff tonometer depends not only on intraocular pressure, but also on the biomechanical properties of the cornea and anterior eye. One of the biomechanical properties of the cornea is viscoelasticity, which is the most visible in its high-speed deformations. It seems reasonable to link the corneal viscoelasticity parameter to two moments of the highest speed of corneal deformations, when the cornea buckles. The aim of this work is to present a method of determining the time and place of occurrence of corneal buckling, examine spatial and temporal dependencies between two corneal applanations and bucklings in the Corvis ST tonometer, and correlate these dependencies with corneal viscoelastic properties. Methods: Images of the horizontal cross section of the Corvis ST deformed cornea from the air puff tonometer Corvis ST were used. 14 volunteers participated in the study, each of them had one eye measured eight times. Mutual changes in the profile slopes of the deformed corneas were numerically determined. They describe pure corneal deformation, eliminating the influence of rotation, and displacement of the entire eyeball. For each point in the central area of the corneal profile, the maximum velocities of mutual slope changes accompanying the applanations were estimated. The times of their occurrence were adopted as buckling times. Results: The propagation of buckling along the corneal profile is presented, as well as the repeatability and mutual correlations between the buckling parameters and intraocular pressure. Based on the relationship between them, a new parameter describing corneal hysteresis: Corvis Viscoelasticity (CVE) is introduced. It is characterized by high repeatability: ICC = 0.82 (0.69–0.93 CI) and low and insignificant correlation with intraocular pressure: r = 0.25 (p-value = 0.38). Conclusion: The results show for the first time how to measure the corneal buckling and viscoelastic effects with Corvis ST. CVE is a new proposed biomechanical parameter related to the viscoelastic properties of the cornea, which has high repeatability for the examined subject. The distribution of its values is planned to be tested on different groups of patients in order to investigate its clinical applicability.


Sign in / Sign up

Export Citation Format

Share Document