Physarum Itinerae

Author(s):  
Emanuele Strano ◽  
Andrew Adamatzky ◽  
Jeff Jones

The Roman Empire is renowned for sharp logical design and outstanding building quality of its road system. Many roads built by Romans are still used in continental Europe and UK. The Roman roads were built for military transportations with efficiency in mind, as straight as possible. Thus the roads make an ideal test-bed for developing experimental laboratory techniques for evaluating man-made transport systems using living creatures. The authors imitate development of road networks in Iron Age Italy using slime mould Physarum polycephalum. The authors represent ten Roman cities with oat flakes, inoculate the slime mould in Roma, wait as mould spans all flakes-cities with its network of protoplasmic tubes, and analyse structures of the protoplasmic networks. The authors found that most Roman roads, a part of those linking Placentia to Bononia and Genua to Florenzia are represented in development of Physarum polycephalum. Transport networks developed by Romans and by slime mould show similarities of planar proximity graphs, and particular minimum spanning tree. Based on laboratory experiments the authors reconstructed a speculative sequence of road development in Iron Age Italy.

2009 ◽  
Vol 19 (01) ◽  
pp. 105-127 ◽  
Author(s):  
ANDREW ADAMATZKY

Plasmodium of Physarum polycephalum spans sources of nutrients and constructs varieties of protoplasmic networks during its foraging behavior. When the plasmodium is placed on a substrate populated with sources of nutrients, it spans the sources with protoplasmic network. The plasmodium optimizes the network to deliver efficiently the nutrients to all parts of its body. How exactly does the protoplasmic network unfold during the plasmodium's foraging behavior? What types of proximity graphs are approximated by the network? Does the plasmodium construct a minimal spanning tree first and then add additional protoplasmic veins to increase reliability and through-capacity of the network? We analyze a possibility that the plasmodium constructs a series of proximity graphs: nearest-neighbour graph (NNG), minimum spanning tree (MST), relative neighborhood graph (RNG), Gabriel graph (GG) and Delaunay triangulation (DT). The graphs can be arranged in the inclusion hierarchy (Toussaint hierarchy): NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT . We aim to verify if graphs, where nodes are sources of nutrients and edges are protoplasmic tubes, appear in the development of the plasmodium in the order NNG → MST → RNG → GG → DT , corresponding to inclusion of the proximity graphs.


Author(s):  
Andrew Adamatzky ◽  
Selim G. Akl

Slime mould Physarum polycephalum builds up sophisticated networks to transport nutrients between distant parts of its extended body. The slime mould’s protoplasmic network is optimised for maximum coverage of nutrients yet minimum energy spent on transportation of the intra-cellular material. In laboratory experiments with P. polycephalum we represent Canadian major urban areas with rolled oats and inoculated slime mould in the Toronto area. The plasmodium spans the urban areas with its network of protoplasmic tubes. The authors uncover similarities and differences between the protoplasmic network and the Canadian national highway network, analyse the networks in terms of proximity graphs and evaluate slime mould’s network response to contamination.


2010 ◽  
Vol 7 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Andrew Adamatzky

Plasmodium ofPhysarum polycephalumis a single huge (visible by naked eye) cell with a myriad of nuclei. The plasmodium is a promising substrate for non-classical, nature-inspired computing devices. It is capable of approximation of the shortest path in a maze, computation of planar proximity graphs and plane tessellations, primitive memory and decision making. The unique properties of the plasmodium make it an ideal candidate for a role of amorphous biological robots with massive parallel information processing and distributed inputs and outputs. We show that when adhered to a lightweight object resting on a water surface the plasmodium can propel the object by oscillating its protoplasmic pseudopodia. In experimental laboratory conditions and computational experiments we study phenomenology of the plasmodium-floater system, and possible mechanisms of controlling motion of objects propelled by on-board plasmodium.


2011 ◽  
Vol 2 (4) ◽  
pp. 31-46 ◽  
Author(s):  
Andrew Adamatzky ◽  
Selim G. Akl

Slime mould Physarum polycephalum builds up sophisticated networks to transport nutrients between distant parts of its extended body. The slime mould’s protoplasmic network is optimised for maximum coverage of nutrients yet minimum energy spent on transportation of the intra-cellular material. In laboratory experiments with P. polycephalum we represent Canadian major urban areas with rolled oats and inoculated slime mould in the Toronto area. The plasmodium spans the urban areas with its network of protoplasmic tubes. The authors uncover similarities and differences between the protoplasmic network and the Canadian national highway network, analyse the networks in terms of proximity graphs and evaluate slime mould’s network response to contamination.


2013 ◽  
Vol 16 (02n03) ◽  
pp. 1250034 ◽  
Author(s):  
ANDREW ADAMATZKY ◽  
MICHAEL LEES ◽  
PETER SLOOT

Plasmodium of a cellular slime mould Physarum polycephalum is a very large eukaryotic microbe visible to the unaided eye. During its foraging behavior the plasmodium spans sources of nutrients with a network of protoplasmic tubes. In this paper we attempt to address the following question: Is slime mould capable of computing transport networks? By assuming the sources of nutrients are cities and protoplasmic tubes connecting the sources are motorways, how well does the plasmodium approximate existing motorway networks? We take the Netherlands as a case study for bio-development of motorways, while it has the most dense motorway network in Europe, current demand is rapidly approaching the upper limits of existing capacity. We represent twenty major cities with oat flakes, place plasmodium in Amsterdam and record how the plasmodium spreads between oat flakes via the protoplasmic tubes. First we analyze slime-mould-built and man-built transport networks in a framework of proximity graphs to investigate if the slime mould is capable of computing existing networks. We then go on to investigate if the slime mould is able calculate or adapt the network through imitating restructuring of the transport network as a response to potential localized flooding of the Netherlands.


2015 ◽  
Vol 25 (01) ◽  
pp. 1540004 ◽  
Author(s):  
Jeff Jones

The giant amoeboid organism true slime mould Physarum polycephalum dynamically adapts its body plan in response to changing environmental conditions and its protoplasmic transport network is used to distribute nutrients within the organism. These networks are efficient in terms of network length and network resilience and are parallel approximations of a range of proximity graphs and plane division problems. The complex parallel distributed computation exhibited by this simple organism has since served as an inspiration for intensive research into distributed computing and robotics within the last decade. P. polycephalum may be considered as a spatially represented parallel unconventional computing substrate, but how can this ‘computer’ be programmed? In this paper we examine and catalogue individual low-level mechanisms which may be used to induce network formation and adaptation in a multi-agent model of P. polycephalum. These mechanisms include those intrinsic to the model (particle sensor angle, rotation angle, and scaling parameters) and those mediated by the environment (stimulus location, distance, angle, concentration, engulfment and consumption of nutrients, and the presence of simulated light irradiation, repellents and obstacles). The mechanisms induce a concurrent integration of chemoattractant and chemorepellent gradients diffusing within the 2D lattice upon which the agent population resides, stimulating growth, movement, morphological adaptation and network minimisation. Chemoattractant gradients, and their modulation by the engulfment and consumption of nutrients by the model population, represent an efficient outsourcing of spatial computation. The mechanisms may prove useful in understanding the search strategies and adaptation of distributed organisms within their environment, in understanding the minimal requirements for complex adaptive behaviours, and in developing methods of spatially programming parallel unconventional computers and robotic devices.


AmS-Skrifter ◽  
2021 ◽  
pp. 1-300
Author(s):  
Trond Løken

The ambition of this monograph is to analyse a limited number of topics regarding house types and thus social and economic change from the extensive material that came out of the archaeological excavation that took place at Forsandmoen (“Forsand plain”), Forsand municipality, Rogaland, Norway during the decade 1980–1990, as well as the years 1992, 1995 and 2007. The excavation was organised as an interdisciplinaryresearch project within archaeology, botany (palynological analysis from bogs and soils, macrofossil analysis) and phosphate analysis, conducted by staff from the Museum of Archaeology in Stavanger (as it was called until 2009, now part of the University of Stavanger). A large phosphate survey project had demarcaded a 20 ha settlement area, among which 9 ha were excavated using mechanical topsoil stripping to expose thehabitation traces at the top of the glaciofluvial outwash plain of Forsandmoen. A total of 248 houses could be identified by archaeological excavations, distributed among 17 house types. In addition, 26 partly excavated houses could not be classified into a type. The extensive house material comprises three types of longhouses, of which there are as many as 30–40 in number, as well as four other longhouse types, of which there are only 2–7 in number. There were nine other house types, comprising partly small dwelling houses and partly storage houses, of which there were 3–10 in number. Lastly, there are 63 of the smallest storage house, consisting of only four postholes in a square shape. A collection of 264 radiocarbon dates demonstrated that the settlement was established in the last part of the 15th century BC and faded out during the 7th–8th century AD, encompassing the Nordic Bronze Age and Early Iron Age. As a number of houses comprising four of the house types were excavated with the same methods in the same area by the same staff, it is a major goal of this monograph to analyse thoroughly the different featuresof the houses (postholes, wall remains, entrances, ditches, hearths, house-structure, find-distribution) and how they were combined and changed into the different house types through time. House material from different Norwegian areas as well as Sweden, Denmark, Germany and the Netherlands is included in comparative analyses to reveal connections within the Nordic area. Special attention has been given to theinterpretation of the location of activity areas in the dwelling and byre sections in the houses, as well as the life expectancy of the two main longhouse types. Based on these analyses, I have presented a synthesis in 13 phases of the development of the settlement from Bronze Age Period II to the Merovingian Period. This analysis shows that, from a restricted settlement consisting of one or two small farms in the Early BronzeAge, it increases slightly throughout the Late Bronze Age to 2–3 solitary farms to a significantly larger settlement consisting of 3–4 larger farms in the Pre-Roman Iron Age. From the beginning of the early Roman Iron Age, the settlement seems to increase to 8–9 even larger farms, and through the late Roman Iron Age, the settlement increases to 12–13 such farms, of which 6–7 farms are located so close together that they would seem to be a nucleated or village settlement. In the beginning of the Migration Period, there were 16–17 farms, each consisting of a dwelling/byre longhouse and a workshop, agglomerated in an area of 300 x 200 m where the farms are arranged in four E–W oriented rows. In addition, two farms were situated 140 m NE of the main settlement. At the transition to the Merovingian Period, radiocarbon dates show that all but two of the farms were suddenly abandoned. At the end of that period, the Forsandmoen settlement was completely abandoned. The abandonment could have been caused by a combination of circumstances such as overexploitation in agriculture, colder climate, the Plague of Justinian or the collapse of the redistributive chiefdom system due to the breakdown of the Roman Empire. The abrupt abandonment also coincides with a huge volcanic eruption or cosmic event that clouded the sun around the whole globe in AD 536–537. It is argued that the climatic effect on the agriculture at this latitude could induce such a serious famine that the settlement, in combination with the other possible causes, was virtually laid waste during the ensuing cold decade AD 537–546. 


2021 ◽  
Vol 10 ◽  
Author(s):  
Karin Margarita Frei ◽  
Susanne Klingenberg

In 1920 on the island of Lolland, in southern Denmark the remains of one of northern Europe’s richest graves came to light, the Hoby chieftain burial. It revealed a large number of luxurious Roman goods, including two silver drinking cups decorated with Greek-inspired scenes from Homer’s Iliad. The burial dates to the beginning of the Roman Iron Age (1CE -200CE), and represents a key point in time when the Roman Empire failed to expand towards the north and changed its strategy towards a more political and diplomatic type of relationship with northern Europe. Hence, the Hoby burial is considered to be a key example of this type of relationship. We revisited the burial and present the first strontium isotope analyses of the human remains of the Hoby individual from three of his teeth and 10 additional environmental samples to shed light on his provenance. We discussed these results in light of the new insights provided by recent excavations of a contemporary nearby settlement. Our results indicate that the Hoby individual was most probably of local origin, corroborating previous interpretations. Furthermore, the associated settlement seems to confirm the central role of Hoby in the Early Roman Iron Age society.


Author(s):  
Helena Hamerow

The primary aim of this book is to provide an overview of the evidence for the settlements and everyday life of rural communities in northwest Europe from c. ad 400 to 900, broadly the period from the collapse of the western Roman Empire to the rise of early states in its former provinces and Scandinavia. Its secondary purpose is to relate this evidence, which comes mainly from archaeological excavations, to Anglo-Saxon England and to consider its implications for our understanding of settlements here. Each chapter concludes, therefore, with a brief discussion of the comparable evidence from England, even though detailed comparisons cannot always be drawn due to differences in the quantity and nature of the data available. The evidence is examined under five broad topics: buildings and what the ‘built environment’ tells us about the household and its activities; the layout of farmsteads and settlements and how these may reflect the social structure of communities; the formation of territories and demographic developments; farming strategies; and, finally, the role of non-agrarian production and exchange in the economies of rural settlements. Working with evidence spanning such a broad chronological and geographical range is naturally beset with methodological difficulties. One obvious complication is introduced by the different traditions of periodization and terminology used by scholars working in different countries. Thus, a settlement dating to the sixth century might be described as ‘Germanic Iron Age’, ‘Migration period’, ‘early Anglo-Saxon’, or ‘Merovingian’, depending on its location. The chapters which follow draw primarily on evidence from a large region, stretching from southern Scandinavia, through northwest Germany to the Netherlands. This brings with it the danger of adopting a ‘melting pot’ approach, however unintentionally (Halsall 1995a, 1–3). Yet, an appreciation of regional, indeed local, diversity and of the potential for rapid social change in this period is essential. This North Sea zone has been chosen, furthermore, not out of a misguided belief in a ‘homogeneous Germanic culture’ (ibid.), but because it was in close cultural and economic contact with England and includes the regions from which the Anglo-Saxons believed their forebears to have originated.


Sign in / Sign up

Export Citation Format

Share Document