scholarly journals Determination of soil properties from standard penetration test complemented by torque measurement (SPT-T)

2014 ◽  
Vol 36 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Anna S. P. Peixoto ◽  
David de Carvalho
2020 ◽  
Vol 10 (9) ◽  
pp. 3111 ◽  
Author(s):  
Visar Farhangi ◽  
Moses Karakouzian ◽  
Marten Geertsema

Liquefaction is a hazardous seismic-based phenomenon, which causes an abrupt decrease in soil strength properties and can result in the massive destruction of the built environment. This research presents a novel approach to reduce the risk of soil liquefaction using jet-grouted micropiles in clean sands. The saturated soil profile of the study project mainly contains clean sands, which are suitable to more reliably employ simplified soil liquefaction analyses. The grouting is conducted using 420 micropiles to increase the existing soil properties. The effect of jet grouting on reducing the potential of liquefaction is assessed using the results of the cone penetration test (CPT) and the standard penetration test (SPT), which were conducted before and after jet grouting by implementing micropiles in the project sites. According to three CPT-based liquefaction analyses, the Juang method predicts the most effective improvement range of the factor of safety in the clean sand. The Boulanger and Idriss, and Eurocode methods show comparable evaluations. Results of the SPT-based analyses show the most considerable increase of the factor of safety following the Boulanger and Idriss, and NCEER approaches in the SP soil. CPT- and SPT-based analyses confirm the effectiveness of jet grouting by micropiles on enhancing soil properties and reducing the risk of liquefaction.


2017 ◽  
Vol 36 (3) ◽  
pp. 671-676
Author(s):  
JA Sadeeq ◽  
AB Salahudeen

Strength characteristics of foundation soils in the Permanent site of the Federal University Lokoja in Kogi State were evaluated based on standard penetration test (SPT) results using some conventional analytical models proposed by different researchers. The study was carried out in order to take precise engineering decisions on the type of foundations suitable for the proposed structures and to determine the optimal depth of foundation embedment.  The SPT N-values were first corrected to the standard average energy of 60% (N60) before they were used to correlate soil properties. Evaluation of the soil properties were done at foundation embedment depths of 0.6, 2.1 and 3.6 m. Results show that bearing capacity generally increased with boring depth. Based on the Meyerhof allowable bearing pressure estimation method, foundation pressures in the range of 150 – 600  kN/m2 were evaluated for use in the study area at shallow depths (depths in the range of 0.6 - 3.6 m).http://dx.doi.org/10.4314/njt.v36i3.2


2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Marcos Fábio Porto de Aguiar ◽  
Fernando Feitosa Monteiro ◽  
Francisco Heber Lacerda de Oliveira ◽  
Yago Machado Pereira de Matos

RESUMO: Em meio aos diversos métodos utilizados no Brasil para determinação da capacidade de carga de fundações, a grande maioria parte do índice de resistência à penetração (NSPT). Para o caso de pequenas edificações, devido a fatores geralmente econômicos, a experiência ou a prática regional costumam prevalecer. Sendo assim, são elaborados, muitas vezes, projetos sem um procedimento de cálculo fundamentado em parâmetros comprovados por ensaios geotécnicos, podendo ocasionar problemas na edificação, como recalques excessivos, ou, até mesmo, comprometer a segurança da estrutura. Dessa forma, técnicas mais simples e de baixo custo, como o DPL (Dynamic Probing Light), podem ser uma opção para situações de pequenas cargas, viabilizando projetos fundamentados em ensaios in situ. Partindo de investigações com o DPL, este trabalho tem o objetivo de dimensionar fundações superficiais e profundas para edificações de pequeno porte através de algumas das principais metodologias disponíveis na literatura e verificar a sua eficiência. Por meio de resultados de campanhas de sondagens SPT (Standard Penetration Test) e DPL no campo experimental da Universidade de Fortaleza (UNIFOR), determinou-se a capacidade de carga de fundações superficiais e profundas fazendo aplicação dos índices NSPT e NSPT equivalente obtido pela correlação com o DPL. Identificou-se que essa correlação apresentou coeficiente de determinação satisfatório entre os parâmetros obtidos nos ensaios SPT e DPL para o terreno em questão, mostrando-se o DPL ser uma alternativa pertinente, em termos técnicos para projetos de fundações de obras de pequeno porte.ABSTRACT: Among the various methods used in Brazil of the determination of the bearing capacity on foundations, most part uses the standard penetration resistance (NSPT). For small constructions, due to economic factors generally, experience or regional practice usually prevails. Thus, projects without a reasoned calculation procedure in parameters supported by geotechnical tests are often designed, and may cause problems in the building, as excessive settlements, or even compromise the safety of the structure. In this way, simple and low cost techniques such as DPL (Dynamic Probing Light) may be an option for small loads situations, enabling projects based on in situ tests. This paper proposes to calculate the dimensions of shallow and deep foundations for small constructions and check its efficiency using DPL tests. Through the results of SPT (Standard Penetration Test) and DPL tests in the experimental field of the University of Fortaleza (UNIFOR), the determination of the bearing capacity in shallow and deep foundations was done using NSPT index and equivalent NSPT index obtained by the correlation with DPL. A correlation with satisfactory coefficient of determination was obtained between SPT and DPL tests parameters for the analyzed field, showing up the DPL as an appropriate alternative in technical terms for foundation design of small constructions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tarun Kumar Lohani ◽  
Melkamu Teshome Ayana ◽  
Abdella Kemal Mohammed ◽  
Jyotiranjan Pattanaik

Borehole samples drilled up to a depth of 10 m provide a clear understanding whether a foundation is safe for any structure. The main objective of the present study reconnoitered the soil bearing capacity and foundation settlement characteristics using the standard penetration test (SPT) data obtained from 3 boreholes at 1 m, 2 m, and 3 m depths to correlate soil properties and deterrents, if any, created by groundwater. The methodology of the research is to collect soil samples, and ensuing subsoil analysis was performed in order to obtain concrete information to optimize the foundation system within the safe bearing capacity of soil and its allowable settlement. The scope of the work encompasses conducting detailed soil investigation from drilling logs, laboratory testing, and conducting and estimating safe bearing capacity. The result of the research aims at providing safety to the foundation from the investigations of conclusive recommendation to be adopted which would be economically feasible and structurally secured.


Author(s):  
Joseph P. Koester ◽  
Chris Daniel ◽  
Michael L. Anderson

A series of dynamic in situ penetration tests was performed in deep alluvial gravel deposits at Seward, Alaska, that were shaken and apparently liquefied by the March 27, 1964, Alaska earthquake. Both a U.S. standard penetration test split spoon and a larger-diameter drive sampler were used, and dynamic cone penetrometers of two sizes were also driven into the gravels near the mouth of the Resurrection River that had exhibited settlement and lateral spreading as a result of earthquake shaking. Two safety hammers were used [nominally 623 N (140 lb) and 1334 N (300 lb)], and the energy delivered with various hammer and penetrometer combinations was measured throughout all tests. Limited measurements of hammer velocity were also made by a radar system developed for that purpose to allow for kinetic energy determination. Soils recovered in the split spoon samplers were sent to the U.S. Army Engineer Waterways Experiment Station Soils Research Facility in Vicksburg, Mississippi, where they were evaluated for classification (gradation and index properties). The sampling and testing procedures used at the Seward site, as well as preliminary analysis of the various penetration test results, are summarized. Comparisons are made with penetration resistance measurements made by the Alaska Highway Department immediately after the 1964 earthquake. Results of this investigation will be adapted to guide future practice for in situ determination of liquefaction resistance in coarse alluvial soils.


Author(s):  
Zheng Guan ◽  
Yu Wang

Standard Penetration test (SPT) is a widely used in-situ test for characterizing variation of subsurface soil properties, and results of site investigation are usually simplified as a 2D vertical cross-section for subsequent geotechnical design and construction. Current geotechnical design codes and guidelines only provide general recommendations for selection of an appropriate number of in-situ tests (e.g., SPT) (e.g., the greater variability of subsurface conditions, the larger number of SPTs required to obtain sufficient underground information). No quantitative or rational method is available for selecting the appropriate number of SPTs considering spatial variability and correlation in subsurface conditions. A comprehensive parametric study is carried out in this study to investigate the influence of spatial variability in subsurface conditions on the minimum SPT number needed for satisfying an accuracy requirement of site investigation. Random field is adopted to model spatial variation and correlation in soil properties in typical site conditions, and 2D Bayesian compressive sampling is used to interpolate sparse SPT data. Based on the parametric study results, a statistical chart is developed for geotechnical engineers to conveniently select appropriate number of SPTs in a vertical cross-section. Real SPT data from New Zealand are used to illustrate and validate the proposed method.


Author(s):  
A. Burak Göktepe ◽  
Selim Altun ◽  
Alper Sezer

AbstractThe standard penetration test (SPT) is the most common test conducted in the field, and it is used to determine in situ properties of different soils. Although it is a matter of debate, these tests are also used for the determination of the consistency of fine-grained soils, whereby the test results can also be utilized to establish numerous empirical correlations to predict the strength of soils in the field. In this study, unsupervised clustering algorithms were employed to classify the SPT standard penetration resistance value (SPT-N) in the field. In this scope, shear strength and liquidity index parameters were used to classify the SPT-N values by taking the classification system of Terzaghi and Peck (1967) into consideration. The results showed that the input parameters were successful for classifying the SPT-N value to an acceptable degree of strength attribute. Therefore, in cases where the SPT tests are unreliable or could not be performed, laboratory tests on undisturbed specimens can give valuable information regarding the consistency and SPT-N value of the soil specimen under investigation. Data in this study is based on several tests that were conducted in a region; nevertheless, it is advised that the results of this study should be evaluated using global data.


Sign in / Sign up

Export Citation Format

Share Document