Effect of Alloy Composition on the Glass Forming Ability in Ca-Mg-Zn Alloy System

2005 ◽  
pp. 3415-3418 ◽  
Author(s):  
Eun Soo Park ◽  
Won Tae Kim ◽  
Do Hyang Kim
2005 ◽  
Vol 475-479 ◽  
pp. 3415-3418 ◽  
Author(s):  
Eun Soo Park ◽  
Won Tae Kim ◽  
Do Hyang Kim

The effect of alloy composition on the glass forming ability (GFA) of the Ca-Zn-Mg alloys has been investigated in the present study. The alloy compositions investigated are near Ca-rich ternary eutectic composition; Ca60Mg15Zn25, Ca65Mg10Zn25, Ca65Mg15Zn20, Ca65Mg20Zn15, and Ca70Mg15Zn15. Bulk metallic glass (BMG) samples with the diameter larger than 5 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the parameters representing the glass forming ability, Trg and γ parameters exhibit good correlation with the maximum diameter of the fully amorphous structure in the alloy compositions investigated in the present study.


2007 ◽  
Vol 561-565 ◽  
pp. 1333-1336 ◽  
Author(s):  
Qing Sheng Zhang ◽  
Wei Zhang ◽  
Akihisa Inoue

The thermal stability and crystalline phases precipitated from the as-cast rods of the Cu50Zr50-based alloys with addition of Al or simultaneous addition of Al/Ti or Al/Ag elements were investigated using DSC, DTA and XRD. The value of Tx, Trg and γ as a function of alloy composition shows a same trend, in which the Cu46Zr46Al8 alloy exhibits the largest value of Tx, Trg and γ. However, this trend is different from the variation of the dc with alloy composition, in which the Cu42Zr42Al8Ag8 alloy has the largest dc for glass formation. Trg′ based on Tg/Tm has a good correlation with the critical diameter for glass formation in this alloy system. It was found that the alloy with higher GFA has more complex precipitated crystalline phases from the as-cast rod with a diameter larger than the critical diameter for glass formation.


2003 ◽  
Vol 18 (7) ◽  
pp. 1588-1593
Author(s):  
Yi Lei ◽  
M. Calvo-Dahlborg ◽  
J.M. Dubois ◽  
Zukun Hei ◽  
P. Weisbecker ◽  
...  

A pseudoternary alloy system was constructed by combining icosahedral quasicrystal (IQC), decagonal quasicrystal (DQC), and Zr into one alloy system. Different proportions of Zr were added into pseudobinary alloy IQC80DQC20 (in wt.%). The structural evolution in these alloys is discussed. An amorphous alloy composition was found in this system. Melt-spinning amorphous alloy was produced in this composition. Through differential scanning calorimetry experiments, the amorphous alloy exhibited a high glass-forming ability comparable to that of the Inoue alloy Zr65Al7.5Cu17.5Ni10.


2007 ◽  
Vol 22 (2) ◽  
pp. 471-477 ◽  
Author(s):  
Dong Ho Kim ◽  
Jin Man Park ◽  
Do Hyang Kim ◽  
Won Tae Kim

The effects of niobium (Nb) addition on the glass-forming ability (GFA), crystallization behavior, and compressive mechanical property of iron (Fe)–boron (B)–yttrium (Y) alloys have been investigated. Among the (Fe71.2B24Y4.8)100−xNbx (x = 0, 2, 4, 6, 8) alloys investigated, (Fe71.2B24Y4.8)96Nb4 exhibits the highest GFA, enabling the formation of glassy rods with a maximum diameter of 7 mm, which is the largest among quaternary Fe-based alloys. The comparison of the crystallization behavior of the alloys shows that the formation of metastable Fe23B6 phase during crystallization in the (Fe71.2B24Y4.8)96Nb4 alloy can suppress the formation of other stable crystalline phases such as α-Fe, enhancing the stability of the glass phase. The present results show that the attainment of a significantly high GFA is possible even in a quaternary Fe-based alloy system by properly tailoring the competing crystalline phase by the modification of liquid chemistry.


2010 ◽  
Vol 654-656 ◽  
pp. 1042-1045 ◽  
Author(s):  
Qing Sheng Zhang ◽  
Wei Zhang ◽  
Dmitri V. Louzguine-Luzgin ◽  
Akihisa Inoue

A new series of bulk metallic glasses were developed by addition of Fe into the ternary Zr60Cu30Al10 alloy. Although Fe-Cu element pair shows distinct immiscibility with a large positive heat of mixing, substitution of Fe for Cu significantly improves the glass-forming ability of the ternary Zr60Cu30Al10 alloy. The critical diameter for glass-formation increases from 8 mm for Zr60Cu30Al10 alloy to 20 mm for Zr60Cu25Fe5Al10 and Zr62.5Cu22.5Fe5Al10 alloys. As compared with the ternary Zr60Cu30Al10 alloy, the new quaternary Zr-Cu-Fe-Al alloys show lower liquidus temperatures. The Zr60Cu25Fe5Al10 and Zr62.5Cu22.5Fe5Al10 alloys, the best BMG-formers in this alloy system, are found to locate very near a Zr-Cu-Fe-Al eutectic point. The new Zr-Fe-Cu-Al bulk metallic glasses exhibit high strength of about 1700 MPa. The plastic strain increases from 7.8% to 11.3% with increasing the content of Fe from 0 to 12.5%. The finding of a Ni-free Zr-based bulk glassy alloy with the extremely high glass-forming ability is expected to extend the future application of bulk metallic glasses.


2004 ◽  
Vol 19 (8) ◽  
pp. 2221-2225 ◽  
Author(s):  
J.Y. Lee ◽  
D.H. Bae ◽  
J.K. Lee ◽  
D.H. Kim

In this study, the effect of addition of Nb on glass formation in Ni–Ti–Zr–Si–Sn alloys has been studied. The composition range for bulk glass formation with Dmax > 2 mm (Dmax, maximum diameter for glass formation by injection cast method) becomes wider when compared with the non-Nb–containing alloy. The ΔTx (= Tx – Tg; Tx, crystallization onset temperature; Tg, glass transition temperature), Trg (= Tg/Tl; Tl, liquidus temperature) and γ [= Tx/(Tl + Tg)] values for the alloys Dmax > 2 mm are in the range of 40–59, 0.638–0.651, and 0.410–0.419, respectively. The compositions of the alloys (Dmax > 2 mm) are closer to pseudo-eutectic composition than that of the alloy without Nb, showing an improved glass forming ability. The critical cooling rate for glass formation (Dmax = 5 mm) is estimated to be order of approximately 40 K/s.


2016 ◽  
Vol 368 ◽  
pp. 3-6
Author(s):  
Mária Huráková ◽  
Kornel Csach ◽  
Jozef Miškuf ◽  
Alena Juríková ◽  
Štefan Demčák ◽  
...  

Nanoindentation experiments were executed on amorphous metallic ribbons made of Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 that differ in microhardness and glass forming ability. The individual serrated plastic flow events were analyzed in a wide range of the loading rates. In the individual pop-in events of the load-displacement (P-h) curve the contributions of plastic deformation (Δhpl) were calculated depending on the loading rate and the alloy composition. It is concluded that the contribution of the serrated plastic deformation flow varies with the composition of the alloy. The highest plastic deformation for the individual pop-ins was observed for Zr-based metallic glasses.


Sign in / Sign up

Export Citation Format

Share Document