EBSD and TEM Characterization of Ultrafine Grained High Purity Aluminum Produced by Accumulative Roll-Bonding

Author(s):  
Naoya Kamikawa ◽  
X. Huang ◽  
Nobuhiro Tsuji ◽  
Niels Hansen ◽  
Yoritoshi Minamino
2006 ◽  
Vol 512 ◽  
pp. 91-96 ◽  
Author(s):  
Naoya Kamikawa ◽  
X. Huang ◽  
Nobuhiro Tsuji ◽  
Niels Hansen ◽  
Yoritoshi Minamino

High purity aluminum (99.99% purity) was severely deformed by accumulative roll-bonding (ARB) to a thickness reduction of 98.4%. Quantitative microstructural characterization of the deformed sample was carried out by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD scans at various locations from the sample surface to the mid-thickness revealed a fairly uniform and equiaxed structure, although a small fraction of an elongated structure parallel to rolling direction (RD) was also observed. Misorientation angle distributions for grain boundaries of which misorientation angle was larger than 2° were evaluated by EBSD, showing that more than 70% of the boundaries were high-angle ones (>15°). More detailed structural features, such as low-angle boundaries (<2°) and dislocations between boundaries were characterized by TEM. The TEM results indicated that about 17% of the boundaries have misorientations <2° and that the fraction of high-angle boundaries is about 52%. An estimated yield strength based on the structural parameters determined by TEM was in good agreement with the measured value.


2007 ◽  
Vol 7 (11) ◽  
pp. 3872-3875 ◽  
Author(s):  
Seong-Hee Lee ◽  
Chung-Hyo Lee ◽  
Suk-Ja Yoon ◽  
Seung-Zeon Han ◽  
Cha-Yong Lim

Annealing characteristics of a nanostructured copper alloy processed by accumulative roll-bonding (ARB) were studied. A nano-grained Cu-Fe-P alloy processed by 8 cycles of the ARB was annealed at various temperatures ranging from 100 to 400 °C for 0.6 ks. The sample still showed an ultrafine grained (UFG) structure up to 250 °C, however above 300 °C it began to replace by equiaxed and coarse grains due to an occurrence of the conventional static recrystallization. The hardness of the annealed copper decreased largely above 300 °C. These annealing characteristics of the UFG copper alloy were compared to those of a high purity copper.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


2014 ◽  
Vol 794-796 ◽  
pp. 851-856
Author(s):  
Tadashiege Nagae ◽  
Nobuhiro Tsuji ◽  
Daisuke Terada

Accumulative roll-bonding (ARB) process is one of the severe plastic deformation processes for fabricating ultrafine grained materials that exhibit high strength. In aluminum alloys, aging heat treatment has been an important process for hardening materials. In order to achieve good mechanical properties through the combination of grain refinement hardening and precipitation hardening, an Al-4.2wt%Ag binary alloy was used in the present study. After a solution treatment at 550°C for 1.5hr, the alloy was severely deformed by the ARB process at room temperature (RT) up to 6 cycles (equivalent strain of 4.8). The specimens ARB-processed by various cycles (various strains) were subsequently aged at 100, 150, 200, 250°C, and RT. The hardness of the solution treated (ST) specimen increased by aging. On the other hand, hardness of the ARB processed specimen decreased after aging at high temperatures such as 250°C. This was probably due to coarsening of precipitates or/and matrix grains. The specimen aged at lower temperature showed higher hardness. The maximum harnesses achieved by aging for the ST specimen, the specimens ARB processed by 2 cycles, 4 cycles and 6 cycles were 55HV, 71HV, 69HV and 65HV, respectively. By tensile tests it was shown that the strength increased by the ARB process though the elongation decreased significantly. However, it was found that the tensile elongation of the ARB processed specimens was improved by aging without sacrificing the strength. The results suggest that the Al-Ag alloy having large elongation as well as high strength can be realized by the combination of the ARB process for grain refinement and the subsequent aging for precipitation hardening.


Author(s):  
D. Rahmatabadi ◽  
B. Mohammadi ◽  
R. Hashemi ◽  
T. Shojaee

In this study, ultrafine grained Al5052/Cu multilayered composite has been produced by accumulative roll bonding (ARB) and fracture properties have been studied using plane stress fracture toughness. The fracture toughness has been investigated for the unprocessed specimens, primary sandwich and first, second, and third cycles of ARB process by ASTM E561 and compact tension (CT) specimens. Also, the microstructure and mechanical properties have been investigated using optical microscopy, scanning electron microscopy, uniaxial tensile tests, and microhardness measurements. The value of plane stress fracture toughness for the ultrafine grained Al5052/Cu composite increased by increasing the number of ARB cycles, continuously from the primary sandwich to end of the third cycle. The maximum value of 59.1 MPa m1/2 has been obtained that it is about 2.77 and 4.05 more than Al5052 and pure Cu (unprocessed specimens). This phenomenon indicated that ARB process and the addition of copper to aluminum alloy could increase the value of fracture toughness to more than three times. The results showed that by increasing the ARB cycles, the thickness of copper layers reduced and after the fifth cycle, the excellent uniformity of Cu layers achieved. By increasing the number of ARB cycles, the microhardness of both aluminum and copper layers have been significantly increased. The tensile strength of the sandwich has been enhanced continually, and the maximum value of 566.5 MPa has been achieved.


2020 ◽  
Vol 979 ◽  
pp. 84-88
Author(s):  
A. Arun ◽  
Lakshmanan Poovazhgan

Accumulative Roll Bonding (ARB) is one among the techniques in Severe Plastic Deformation (SPD) which is used to produce ultrafine grains and nanocrystalline structure in the materials used. Tensile test, micro hardness test, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and bending tests are the various tests carried out to understand the grain refinement of ARB materials. ARB is carried out in homogenous and heterogeneous materials to bring out the useful applications of ultrafine grained materials. ARB process mainly carried out in room, warm and hot temperature. The variations in the structure of the material are obtained by changing the load applied on the roller and by increasing the number of passes. This review paper brings out how the mechanical properties of the materials are improved by ARB process


Sign in / Sign up

Export Citation Format

Share Document