Wave Propagation Characteristics of One Dimensional Rod Phononic Crystal

2012 ◽  
Vol 452-453 ◽  
pp. 1230-1234
Author(s):  
Xiao Jian Liu ◽  
You Hua Fan
2012 ◽  
Vol 452-453 ◽  
pp. 1230-1234
Author(s):  
Xiao Jian Liu ◽  
You Hua Fan

The elastic wave band structures of the one dimensional rod phononic crystal are studied by the lumped-mass method. For the infinite periodic structure, the accuracy of numerical results is influenced by the number of discrete mass. The initial and stop frequecy of the first bandgap need different number of discrete mass to achieve calculation accuracy when two materials composed phononic crystal at different volume ratios. For the finite structure, the different arrangements make different width of the attenuation area at periodic load. The width of the bangap exhibits largely when the external load acts on the matrial with lower denstiy and elastic modulus in front of the higher density and elastic mudulus material.


2008 ◽  
Vol 17 (03) ◽  
pp. 255-264 ◽  
Author(s):  
ARAFA H. ALY ◽  
SANG-WAN RYU ◽  
CHIEN-JANG WU

We theoretically studied electromagnetic wave propagation in a one-dimensional metal/dielectric photonic crystal (1D MDPC) consisting of alternating metallic and dielectric materials by using the transfer matrix method. We performed numerical analyses to investigate the propagation characteristics of a 1D MDPC. We discuss the details of the calculated results in terms of the electron density, the thickness of the metallic layer, different kinds of metals, and the plasma frequency.


1978 ◽  
Vol 45 (3) ◽  
pp. 469-474 ◽  
Author(s):  
D. B. Bogy

The linearized form of the inviscid, one-dimensional Cosserat jet equations derived by Green [6] are used to study wave propagation in a circular jet with surface tension. The frequency spectra are shown for complex wave numbers for a complete range of Weber numbers. The propagation characteristics of the waves are studied in order to determine which branches of the frequency spectra to use in the semi-infinite jet problem with harmonic forcing at the nozzle. Two of the four branches are eliminated by a radiation condition that energy must be outgoing at infinity; the remaining two branches are used to satisfy the nozzle boundary conditions. The variation of the jet radius along its length is shown graphically for various Weber numbers and forcing frequencies. The stability or instability is explained in terms of the behavior of the two propagating phases.


2011 ◽  
Vol 121-126 ◽  
pp. 448-452
Author(s):  
Yu Yang He ◽  
Xiao Xiong Jin

The width of band gap is calculated with lumped mass method in order to study the wave propagation of longitudinal and transverse elastic wave of one-dimensional phononic crystal. The starting and terminating frequency is analyzed by changing the filling rate, the density difference of two materials, cross-section height ratio, and the Young's modulus of the scatter.


2013 ◽  
Vol 133 (12) ◽  
pp. 954-960 ◽  
Author(s):  
Akihiro Ametani ◽  
Kazuki Kawamura ◽  
Asha Shendge ◽  
Naoto Nagaoka ◽  
Yoshihiro Baba

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


Sign in / Sign up

Export Citation Format

Share Document