Studies on Friction Stir Welding of AA2014, AA6082 and AA7075 Simillar and Dissimillar Joints

2020 ◽  
Vol 37 ◽  
pp. 15-24
Author(s):  
P. Gunasekaran ◽  
K.T. Thilagham ◽  
D. Noorullah

The joining of similar and dissimilar AA2014, AA6068 and AA7075 aluminium plates of 6mm thickness was carried out by friction stir welding (FSW) technique. FSW of Aluminium to Aluminium has caught significant consideration from assembling industries, such as Shipbuilding, Automotive, Railway and Aircraft generation. Here, the chosen process parameters are tilt angle (2º), tool rotation speed (900rpm) and transverse feed of (80mm/min) at constant axial force 2kN. An attempt was made to join the similar and dissimilar aluminium plate of 6 mm thickness with a conical tapered tool profile. Then, the effect of welding speed on microstructures, hardness distribution and tensile properties of the welded similar and dissimilar joints AA2014, AA6068 and AA7075 were investigated.

2015 ◽  
Vol 799-800 ◽  
pp. 434-438 ◽  
Author(s):  
H.A.D. Hamid ◽  
A.A. Roslee

This paper presents an investigation of research objectives on the effect of tilt angle on microstructure and mechanical properties of dissimilar aluminum alloy sheets between AA5083 and AA6061, 5mm plates by using Friction Stir Welding (FSW) process in butt joint. The base materials of AA5083 and AA6061 were located on the retreating side (RS) and advancing side (AS), respectively. The welding process and the welding parameters such as tool pin profile, tool rotation speed, welding speed and tilt angle influenced the mechanical properties of the Friction Stir Welding joints significantly. For this experiment, the Friction Stir Welding materials joined under five different tilt angles (from 0oto 4o) with 86mm/min of welding speed and 910 rpm of tool rotation speed which were set similarly. Microscopic examination on the weld samples showed significant variation in the microstructure especially in the region of heat-affected zone (HAZ), weld nugget or dynamically recrystallized zone (DXZ) and in the base metal.


Author(s):  
Shubham Verma ◽  
Joy Prakash Misra ◽  
Meenu Gupta

The present study deals with the application of sequential procedure (i.e. steepest ascent) to obtain the optimum values of process parameters for conducting friction stir welding (FSW) experiments. A vertical milling machine is modified by fabricating fixture and tool ( H13 material) for performing FSW operation to join AA7039 plates. The steepest ascent technique is employed to design the experiments at different rotational speed, welding speed, and tilt angle. The ultimate tensile strength is considered as a performance characteristic for deciding the optimal levels. The mechanical and metallurgical characteristics of the joints are studied by executing tensile and microhardness tests. It is concluded from the graphical analysis of the steepest ascent technique that the optimal maximum and minimum values are 1812–1325 r/min for rotational speed, 43–26 mm/min for welding speed, and 2°–1.3° for tilt angle, respectively. Besides, optical microscope and scanning electron microscope are utilized for microstructural and fractographic analyses for a better understanding of the process.


Author(s):  
Shubham Verma ◽  
Joy Prakash Misra

This research investigates the effect of process parameters on real-time temperature and forces distribution during friction stir welding of AA7039. Experiments are conducted at different rotational speed, welding speed, and tilt angle conditions. For the experimentation, a low-cost real-time force-measuring fixture is indigenously developed in-house. However, eight K-type L-shaped thermocouples are used to examine the real-time temperature distribution. The forces in the z-direction are of a higher magnitude than the x-direction. The maximum force in the z-direction of 3.25 kN is witnessed for 2° tilt angle and a minimum of 2.1 kN for 26 mm/min of welding speed. The maximum force in the x-direction of 0.97 kN is obtained at 2° tilt angle and a minimum of 0.27 kN is obtained at 1.3° tilt angle. The maximum temperature of 390 °C is observed at 1812 r/min, whereas a minimum of 283 °C is observed at 43 mm/min of welding speed. The variations in temperature and force distribution during friction stir welding are also evaluated by utilizing two phenomenological models.


2013 ◽  
Vol 787 ◽  
pp. 346-351
Author(s):  
Salar Salahi ◽  
Vahid Rezazadeh ◽  
Atabak Iranizad ◽  
Ali Hosseinzadeh ◽  
Amir Safari

As a novel technique for joining materials, friction stir welding (FSW) has significant advantages over the conventional welding methods and is widely applied for joining different materials including aluminum, magnesium and copper alloys. In this research, the mechanical and microstructural characteristics of friction stir welded annealed pure copper joints were investigated. The influence of the tool rotation speed, welding speed and applied load was studied. The friction stir welding (FSW) was conducted at welding speed ranged from 30 to 70 mm/ min, rotation speed ranged from 400 to 1200rpm and applied load ranged from 1000 to 1500 kg. After welding process, tensile and Vickers hardness tests were performed. It has been found that increasing the tool rotational speed and/or reducing the welding speed increases heat input and causes grain coarsening in stir zone. High applied load refines the microstructure of NZ and increases the hardness and tensile strength of NZ. An optimum heat input condition was found to reach the best mechanical properties of the joints. The tensile characteristics of the friction stir welded tensile samples depend significantly on the tool rotation speed ,welding speed and applied load.


2013 ◽  
Vol 372 ◽  
pp. 478-485 ◽  
Author(s):  
Chaiyoot Meengam ◽  
Muhamad Tehyo ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

The aim of this research is to study the influence of welding parameters on the metallurgical and mechanical properties of friction stir welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM) 356-T6 and AA6061-T651 by Friction Stir Welding (FSW). The base materials of SSM 356-T6 and AA6061-T651 were located on the advancing side (AS) and on the retreating side (RS) respectively. The base materials were joined under different tool rotation speeds and welding speeds. The material flows from SSM 356 and AA6061-T651 were clearly visible in the weld nugget. In addition, the mixtures of fine equiaxed grain were observed in the stir zone. The increase in tool rotation speed results in the increase in tensile strength of the joints. As for welding speed associated with various tool rotation speeds, an increase in the welding speed affected lesser the base materials tensile strength up to an optimum value; after which its effect increased. Tensile elongation was generally greater at greater tool rotation speed. An averaged maximum tensile strength of 206.3 MPa was derived for a welded specimen produced at the tool rotation speed of 2,000 rpm associated with the welding speed of 80 mm/min. In the weld nugget, higher hardness was observed in the stir zone than in the thermo-mechanically affected zone. Away from the weld nugget, hardness levels increased back to the levels of the base materials.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Miodrag Milčić ◽  
Dragan Milčić ◽  
Tomaž Vuherer ◽  
Ljubica Radović ◽  
Igor Radisavljević ◽  
...  

In order to ensure a quality welded joint, and thus safe operation and high reliability of the welded part or structure achieved by friction stir welding, it is necessary to select the optimal welding parameters. The parameters of friction stir welding significantly affect the structure of the welded joint, and thus the mechanical properties of the welded joint. Investigation of the influence of friction stir welding parameters was performed on 6-mm thick plates of aluminum alloy AA2024 T351. The quality of the welded joint is predominantly influenced by the tool rotation speed n and the welding speed v. In this research, constant tool rotation speed was adopted n = 750 rpm, and the welding speed was varied (v = 73, 116 and 150 mm/min). By the visual method and radiographic examination, imperfections of the face and roots of the welded specimens were not found. This paper presents the performed experimental tests of the macro and microstructure of welded joints, followed by tests of micro hardness and fracture behavior of Friction Stir Welded AA2024-T351 joints. It can be concluded that the welding speed of v = 116 mm/min is favorable with regard to the fracture behavior of the analysed FSW-joint.


2015 ◽  
Vol 813-814 ◽  
pp. 431-437 ◽  
Author(s):  
Singarapu Ugender ◽  
A. Kumar ◽  
A. Somi Reddy

In this investigation, the effect of friction stir welding (FSW) parameters such as D/d ratio, tool tilt angle and welding speed on the mechanical properties of tensile strength, and impact energy of AA 6061 alloy was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that D/d ratio, welding speed are the most significant factors, followed by tool tilt angle in deciding the mechanical properties of friction stir welding aluminum alloy.


2016 ◽  
Vol 54 (1) ◽  
pp. 99
Author(s):  
Duong Dinh Hao ◽  
Tran Hung Tra ◽  
Vu Cong Hoa

The influences of the tool rotation speed (denoted w) and the welding speed (denoted v) on the impact energy at the representative zones in the friction stir welding (FSW) of AA7075-T6 were investigated. Here, the standard V–Notched specimens were applied in which the notches were addressed at the stirred zone (SZ), the heat affected zones (HAZ) in both the advancing side and the retreating side and the mixed zone (MZ). The experimental results showed that, in all cases, the lowest impact energy is located at the stirred zone and that energy seems to be increased from the SZ to the HAZ across the welding. Furthermore, it is also found that the impact energy is decreased when the ratio of rotation speed to welding speed (w/v) is increased. The microstructure, the temperature distribution, and the hardness in and around the welded zone were considered and discussed.


2008 ◽  
Vol 580-582 ◽  
pp. 447-450
Author(s):  
Hwa Soon Park ◽  
Byung Woo Lee ◽  
Taichi Murakami ◽  
Kazuhiro Nakata ◽  
Masao Ushio

The mechanical properties of the friction stir welds of the oxygen free copper (OFC) and 60%Cu-40%Zn copper alloy(60/40 brass) were investigated. The defect-free welds were obtained in a relatively wide range of welding conditions; the tool rotation speed had rpm of 1000 to 2000 in the OFC and 1000 to 1500 in the 60/40 brass, with the welding speed of 500 to 2000 mm/min. The SZ hardness values of the OFC welds were almost the same or slightly lower than those of the base metal. However, the SZ hardness values of the 60/40 brass in all welding conditions were much higher than those of the base metal. The SZ hardness values of both metals increase with a decrease in heat input. The tensile properties of the all-SZ showed relative correspondence to the variation of the SZ hardness values.


2015 ◽  
Vol 813-814 ◽  
pp. 462-466 ◽  
Author(s):  
R Padmanaban ◽  
V. Muthukumaran ◽  
A. Vighnesh

Friction stir welding (FSW) has become a potential solid state joining technique with considerable advantages over conventional joining process. Defect-free friction stir welded joints with high joint strength are obtained when optimum process parameters are used. Although a large number of parameters govern the FSW process, the tool rotation speed, Welding speed and tool geometry are key parameters that influence the joint strength. In this work, a statistical model relating process parameters and the tensile strength (TS) of friction stir welded AA1100 joints is build using response surface methodology. The four independent variables are tool rotational speed (TRS), welding speed (WS), shoulder diameter (SD) and pin diameter (PD). Central Composite design is used and Analysis of Variance at 95% confidence level was applied to assess the adequacy of the developed model. Genetic algorithm is used for optimizing the parameters. The optimum process parameter values predicted using the genetic algorithm are as follows. Tool rotation speed: 1001.9 rpm; welding speed: 62 mm/min; shoulder diameter: 17.8 mm and pin diameter: 6.5 mm. The corresponding tensile strength of the joints is 73.1556 MPa


Sign in / Sign up

Export Citation Format

Share Document