Effect of Friction Stir Welding Process Parameters on the Mechanical Properties of AA 6061 Aluminum Alloy Using Taguchi Orthogonal Technique

2015 ◽  
Vol 813-814 ◽  
pp. 431-437 ◽  
Author(s):  
Singarapu Ugender ◽  
A. Kumar ◽  
A. Somi Reddy

In this investigation, the effect of friction stir welding (FSW) parameters such as D/d ratio, tool tilt angle and welding speed on the mechanical properties of tensile strength, and impact energy of AA 6061 alloy was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that D/d ratio, welding speed are the most significant factors, followed by tool tilt angle in deciding the mechanical properties of friction stir welding aluminum alloy.

Author(s):  
Shubham Verma ◽  
Joy Prakash Misra ◽  
Meenu Gupta

The present study deals with the application of sequential procedure (i.e. steepest ascent) to obtain the optimum values of process parameters for conducting friction stir welding (FSW) experiments. A vertical milling machine is modified by fabricating fixture and tool ( H13 material) for performing FSW operation to join AA7039 plates. The steepest ascent technique is employed to design the experiments at different rotational speed, welding speed, and tilt angle. The ultimate tensile strength is considered as a performance characteristic for deciding the optimal levels. The mechanical and metallurgical characteristics of the joints are studied by executing tensile and microhardness tests. It is concluded from the graphical analysis of the steepest ascent technique that the optimal maximum and minimum values are 1812–1325 r/min for rotational speed, 43–26 mm/min for welding speed, and 2°–1.3° for tilt angle, respectively. Besides, optical microscope and scanning electron microscope are utilized for microstructural and fractographic analyses for a better understanding of the process.


2014 ◽  
Vol 496-500 ◽  
pp. 110-113
Author(s):  
Dong Gao Chen ◽  
Jin He Liu ◽  
Zhi Hua Ma ◽  
Wu Lin Yang

The7A05 aluminum alloy of the 10mm thickness was welded by the friction stir welding. The microstructure and mechanical Properties of the welded joint was researched by the optical microscope, etc. The results showed: the microstructure of the weld nugget zone and the thermal mechanically affected zone were refined as the welding speed increasing when the rotate speed is constant. As the welding speed increasing the strength of extension of the welded joint is increasing at first and then stable basically. but the yield strength had no obvious change.


2020 ◽  
Vol 37 ◽  
pp. 15-24
Author(s):  
P. Gunasekaran ◽  
K.T. Thilagham ◽  
D. Noorullah

The joining of similar and dissimilar AA2014, AA6068 and AA7075 aluminium plates of 6mm thickness was carried out by friction stir welding (FSW) technique. FSW of Aluminium to Aluminium has caught significant consideration from assembling industries, such as Shipbuilding, Automotive, Railway and Aircraft generation. Here, the chosen process parameters are tilt angle (2º), tool rotation speed (900rpm) and transverse feed of (80mm/min) at constant axial force 2kN. An attempt was made to join the similar and dissimilar aluminium plate of 6 mm thickness with a conical tapered tool profile. Then, the effect of welding speed on microstructures, hardness distribution and tensile properties of the welded similar and dissimilar joints AA2014, AA6068 and AA7075 were investigated.


Author(s):  
Shubham Verma ◽  
Joy Prakash Misra

This research investigates the effect of process parameters on real-time temperature and forces distribution during friction stir welding of AA7039. Experiments are conducted at different rotational speed, welding speed, and tilt angle conditions. For the experimentation, a low-cost real-time force-measuring fixture is indigenously developed in-house. However, eight K-type L-shaped thermocouples are used to examine the real-time temperature distribution. The forces in the z-direction are of a higher magnitude than the x-direction. The maximum force in the z-direction of 3.25 kN is witnessed for 2° tilt angle and a minimum of 2.1 kN for 26 mm/min of welding speed. The maximum force in the x-direction of 0.97 kN is obtained at 2° tilt angle and a minimum of 0.27 kN is obtained at 1.3° tilt angle. The maximum temperature of 390 °C is observed at 1812 r/min, whereas a minimum of 283 °C is observed at 43 mm/min of welding speed. The variations in temperature and force distribution during friction stir welding are also evaluated by utilizing two phenomenological models.


2015 ◽  
Vol 799-800 ◽  
pp. 434-438 ◽  
Author(s):  
H.A.D. Hamid ◽  
A.A. Roslee

This paper presents an investigation of research objectives on the effect of tilt angle on microstructure and mechanical properties of dissimilar aluminum alloy sheets between AA5083 and AA6061, 5mm plates by using Friction Stir Welding (FSW) process in butt joint. The base materials of AA5083 and AA6061 were located on the retreating side (RS) and advancing side (AS), respectively. The welding process and the welding parameters such as tool pin profile, tool rotation speed, welding speed and tilt angle influenced the mechanical properties of the Friction Stir Welding joints significantly. For this experiment, the Friction Stir Welding materials joined under five different tilt angles (from 0oto 4o) with 86mm/min of welding speed and 910 rpm of tool rotation speed which were set similarly. Microscopic examination on the weld samples showed significant variation in the microstructure especially in the region of heat-affected zone (HAZ), weld nugget or dynamically recrystallized zone (DXZ) and in the base metal.


2014 ◽  
Vol 493 ◽  
pp. 709-714 ◽  
Author(s):  
Nurul Muhayat ◽  
Achmad Zubaydi ◽  
Sulistijono ◽  
M. Zaed Yuliadi

The influences of tool tilt angle and tool plunge depth on tensile properties of friction stir welded AA 5083-H116 with the thickness of 4 mm were studied. Four different values of tool tilt angle of 1΀ 2°, 3°, and 4° were used to fabricate the joints. The tool plunge depths were choosen 3.85 mm, 3.90 mm and 3.95 mm. The FSW rotational speed and welding speed were 1125 rpm and 30 mm/min, respectively. The temperature, macrostructure, hardness and tensile strength of joints were compared and discussed. Results show that the increase of tool tilt angle and tool plunge depth resulted the welding temperature increase. Due to the increase of welding temperature, the hole defect become smaller. Tensile testing results indicated that the tensile strength of joints increased with increasing both the tool tilt angle and tool plunge depth.


2018 ◽  
Vol 68 (5) ◽  
pp. 512-518 ◽  
Author(s):  
Suresh Meshram ◽  
Madhusudhan Reddy

Heat treatable aluminium alloy AA2219 is widely used for aerospace applications, welded through gas tungsten and gas metal arc welding processes. Welds of AA2219 fabricated using a fusion welding process suffers from poor joint properties or welding defects due to melting and re-solidification. Friction stir welding (FSW) is a solid-state welding process and hence free from any solidification related defects. However, FSW also results in defects which are not related to solidification but due to improper process parameter selection. One of the important process parameters, i.e., tool tilt angle plays a critical role in material flow during FSW, controlling the size and location of the defects. Effect of tool tilt angle on material flow and defects in FSW is ambiguous. A study is therefore taken to understand the role of tool tilt angle on FSW defects. Variation in temperature, forces, and torque generated during FSW as a result of different tool tilt angles was found to be responsible for material flow in the weld, controlling the weld defects. An intermediate tool tilt angle (1o-2o) gives weld without microscopic defect in 7 mm thick AA2219 for a given set of other process parameters. At this tool tilt angle, x-force, and Z- force is balanced with viscosity and the material flow strain rate sufficient for the material to flow and fill internal voids or surface defects in the weld.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4055-4063 ◽  
Author(s):  
D. Hernández-García ◽  
R. Saldaña-Garcés ◽  
F. García-Vázquez ◽  
E.J. Gutiérrez-Castañeda ◽  
R. Deaquino-Lara ◽  
...  

AbstractIn the present investigation, AA7075-T6 alloys and AZ31B-H24 were joined by the FSW process using the following range of parameters: rotational speed between 200 and 800 rpm, welding speed from 30 to 60 mm/min and a tilt angle from 1° to 3°. In some cases, a tool offset of 1 mm was used into Mg-based alloy. The experimental results show that sound and good joints can be obtained by positioning the tool in the middle of the joint-line using a rotational speed of 200 rpm, a welding speed of 30 mm/min and a tool tilt angle of 1°. The hardness and ultimate tensile strength in the stir zone were 122 Hv and 61.35 MPa, respectively. Also, it is important to mention that the Al3Mg2 and Al12Mg17 intermetallics compounds were observed in the this zone besides some defects like cavities and tunnel.


Sign in / Sign up

Export Citation Format

Share Document