Effect of Solution Treatment on Ageing Behaviour of Al-Mg-Si-Sn Alloy

2021 ◽  
Vol 39 ◽  
pp. 1-8
Author(s):  
Monoj Baruah ◽  
Anil Borah

In this study both natural ageing (NA) and artificial ageing (AA) behaviour of Al-Mg-Si aluminium alloy having trace addition of 0.04 wt.% Sn (Tin) was studied at different solution heat treatment (SHT) temperature and time, ageing time and temperatures. Microstructural analysis was performed to identify the intermetallic phases. It was observed that peak NA hardness strongly depends on the SHT temperature and time. SHT at 530 for 0.5 hour, slows down the peak NA hardness attaining time of the alloy to a maximum of 5 days. But as the SHT time increases to 3.5 hours, the peak NA hardness attaining time reduced to 1 day. Alloy SHT at 530 for 1 hour attain a maximum peak hardness of HRB 24 during 3 days of NA. Artificial ageing improved the hardness of the NA alloy to a maximum of HRB 41 during 12 hours of ageing at 190 . The overall hardness of Al-Mg-Si-Sn as-cast alloy increases by 32 % during ageing process.

2016 ◽  
Vol 867 ◽  
pp. 14-18
Author(s):  
Supakit Vongcharoenpon ◽  
Somjai Janudom ◽  
Thawatchai Plookphol

This work reports the result of heat treatment on microstructures and mechanical property of ZA-27 zinc alloy gear part produced by a slurry squeeze casting process. The Gas Induced Semi-Solid (GISS) technique was employed for preparation of the alloy slurry. The microstructures and mechanical property of the alloy were studied by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and HRB hardness testing. The specimens were solid solution heat treated at 365 °C for 1 h and artificially aged at 150 °C for 0.5, 1, 3, 6, 12 and 24 h. The as-cast microstructures of the alloy mainly consist of globular primary α phase surrounded by β,η and ε phases. After solution treatment the primary α and η phases were dissolved and transformed to the supersaturated β phase. At the early stage of ageing (0.5 – 3 h) the β phase decomposed to α and η phases. After a long period of ageing (6 – 24 h) α and ε phases decomposed through the transformation reaction: α + ε →T’+η. The hardness of specimens was increased after ageing for 0.5 h and gradually decreased with increasing ageing time. The peak hardness was 82 HRB at 0.5 h ageing. The hardness decreased to 62 HRB after ageing for 24 h.


2016 ◽  
Vol 256 ◽  
pp. 58-62 ◽  
Author(s):  
Kang Du ◽  
Qiang Zhu ◽  
Da Quan Li

T6 heat treatment is an effective method to improve the comprehensive properties of Al-Si-Cu-Mg series aluminium alloys. Solution treatment temperature and time, quench process and media, as well as artificial ageing temperature and time are the key factors to determine mechanical properties. Besides these factors, natural ageing, i.e. the holding time between quenching and the starting of artificial treatment at ambient temperature was observed to be significant affect mechanical properties of the aluminium alloys. This effect on semi solid processed aluminium alloys was lack of investigations as the semi solid process produces T6 treatable and weldable components. The present paper focuses on the change regularity of hardness and precipitate behaviour of semi-solid 319S aluminium alloy under different natural ageing (NA) treatment additional to standard T6. Density and morphology of hardening precipitates are analysed using TEM, and the influence mechanism of NA during T6 heat treatment will be discussed. The results show that NA has a positive influence on mechanical properties of the rheo-cast 319S alloy.


2007 ◽  
Vol 130 ◽  
pp. 175-180 ◽  
Author(s):  
Andrzej Kiełbus

The paper presents results of TEM investigations of Elektron 21 magnesium alloy in as cast condition and after heat treatment. The compositions of the Elektron 21 alloy used in the present study was Mg-2,7%wtNd-1,2%wtGd-0,47%wtZr. Solution heat treatment was performed at 520°C/8 h/water. Ageing treatments were performed at 200°C/4÷96h and 300°C/48h with cooling in air. The as-cast microstructure and microstructural evolution during heat treatment were examined by transmission electron microscopy. Samples were prepared using Gatan PIPS ion mill. Examinations were performed in a JEM 2010 ARP microscope. The microstructure of the cast alloy consists of a-Mg phase matrix with precipitates of Mg12(Ndx,Gd1-x) phase at grain boundaries. After solution treatment the Mg12(Ndx,Gd1-x) phase dissolved in the matrix. The ageing treatment applied after solution treatment with air-cooling caused precipitation of a β’ and β phases.


2004 ◽  
Vol 467-470 ◽  
pp. 399-406 ◽  
Author(s):  
M.A. Moustafa ◽  
F.H. Samuel ◽  
H.W. Doty

A study was carried out to determine the role of additives such as Mg and Cu on the microstructural characteristics of grain refined, Sr-modified eutectic A413.1 alloy (Al-11.7% Si) during solution heat treatment. For comparison purposes, some of the alloys were also studied in the non-modified condition. The alloys were cast in a steel permanent mold preheated at 425 °C that provided a microstructure with an average dendrite arm spacing (DAS) of ~ 22 µm. Castings were solution heat treated at 500 ± 2 °C for time up 24 h, followed by quenching in warm water (at 60 °C). Microstructural analysis of the as-cast and heat-treated castings was carried out using optical microscopy in conjunction with image analysis. Phase identifications were done using the electron probe microanalysis (EPMA) technique. In the as-cast condition, the addition of 0.42 wt% Mg to the unmodified alloy produced relatively large Si particles compared to the base A413.1 alloy. The Si particle size remained more or less the same with increase in solution treatment time and Mg level. Both Mg2Si and Al2Cu phases were observed to dissolve almost completely after 8 h solution time, while the Al5Cu2Mg8Si6 phase was found to persist even after 24 h.


2006 ◽  
Vol 116-117 ◽  
pp. 181-184 ◽  
Author(s):  
Antonio Forn ◽  
Maite T. Baile ◽  
Enric Martín ◽  
Javier Goñi ◽  
I. Sarriés

The present work studies the effect the solution heat treatment, during artificial ageing and re-aging, has on the mechanical properties of an A357 aluminium alloy component formed by New Rheocasting. The effect that the evolution of silicon, during the solution treatment at various times, has on the mechanical properties was also examined. The mechanical properties were evaluated performing tensile tests, fractographical analysis and hardness tests. The microstructural characterization was made using optical and electronic microscopy.


2015 ◽  
Vol 828-829 ◽  
pp. 219-225 ◽  
Author(s):  
Emma Sjölander ◽  
Salem Seifeddine ◽  
Federico Fracasso

The aim of the study is to present the influence of quench rate on the artificial ageing response of Al-8%Si-0.4%Mg cast alloy in terms of Brinell hardness and yield strength. The investigated material was produced by a gradient solidification technique and exhibited a microstructure that corresponds to the one of gravity die castings, with a dendrite arm spacing of approximately 25 µm. The study comprises two solution treatment temperatures, five quench rates and artificial ageing times exceeding 100 hours at 170 and 220 °C. The microstructure and concentration profiles of Mg and Si were evaluated using energy and wavelength dispersive spectroscopy. Microstructural examination reveals an increment of solutes in the Al-matrix when higher solution treatment temperatures accompanied with high quench rates are applied and shows how both Si and Mg atoms have diffused towards the eutectic during quenching. Consequently, i.e. by increasing the levels of solutes and vacancies, the highest strength levels were realized. The study confirmed that quench rates above 2 °C /s do not offer substantial strength improvement while quenching at lower rates resulted in a lower peak hardness and longer times to peak


2015 ◽  
Vol 754-755 ◽  
pp. 619-623
Author(s):  
Darus Murizam ◽  
Shamsul Baharin Jamaludin ◽  
Jamil Noorina Hidayu ◽  
Che Pa Faizul ◽  
Mohd Zaki Ruhiyuddin ◽  
...  

The effect of different solution heat treatment temperature on the mechanical property and silicon morphology was investigated by hardness test and microstructural analysis. The samples of A319 alloy were solution heat treated at three different temperatures (495°C, 510°C and 525°C) followed by artificial ageing at 180°C. The ageing kinetic was accelerated and peak aged gave the lowest value for the samples solution treated at the highest solution treatment temperature (525°C). This result was due to the fragmentation and spherodization of the silicon particles morphologies in the microstructure of the samples.


2020 ◽  
Vol 75 (5) ◽  
pp. 113-127
Author(s):  
Simon Kleiner ◽  
Josef Zürcher ◽  
Otmar Bauer ◽  
Patrick Margraf

Abstract The age-hardenable cast alloy AlSi10Mg is the most widely used alloy for additive manufacturing of aluminium components by means of selective laser melting. Due to the rapid solidification, the material exhibits a fine cellular microstructure, composed of a supersaturated Al-matrix and a network of silicon along the cell boundaries. The temperature of the building platform as well as the built time both have an influence on the level of precipitation in the material and this in turn affects the heat treatment response of AlSi10Mg in as-built condition. Material built on a cold platform can be strengthened by direct artificial ageing and shows only a small loss in strength after a stress relief heat treatment. Material built on a preheated platform has the highest strength in as-built condition and subsequent artificial ageing or stress relieving causes softening of the material. A condition which is truly independent of the platform temperature can only be reached by applying a solution heat treatment followed by quenching. Unlike castings, which need a long-term solution heat treatment to reach optimum mechanical properties, the selectively laser melted material shows the best mechanical properties in T6-condition after a solution heat treatment of short duration


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


Sign in / Sign up

Export Citation Format

Share Document