scholarly journals Influence of Quench Rate on the Artificial Ageing Response of an Al-8Si-0.4Mg Cast Alloy

2015 ◽  
Vol 828-829 ◽  
pp. 219-225 ◽  
Author(s):  
Emma Sjölander ◽  
Salem Seifeddine ◽  
Federico Fracasso

The aim of the study is to present the influence of quench rate on the artificial ageing response of Al-8%Si-0.4%Mg cast alloy in terms of Brinell hardness and yield strength. The investigated material was produced by a gradient solidification technique and exhibited a microstructure that corresponds to the one of gravity die castings, with a dendrite arm spacing of approximately 25 µm. The study comprises two solution treatment temperatures, five quench rates and artificial ageing times exceeding 100 hours at 170 and 220 °C. The microstructure and concentration profiles of Mg and Si were evaluated using energy and wavelength dispersive spectroscopy. Microstructural examination reveals an increment of solutes in the Al-matrix when higher solution treatment temperatures accompanied with high quench rates are applied and shows how both Si and Mg atoms have diffused towards the eutectic during quenching. Consequently, i.e. by increasing the levels of solutes and vacancies, the highest strength levels were realized. The study confirmed that quench rates above 2 °C /s do not offer substantial strength improvement while quenching at lower rates resulted in a lower peak hardness and longer times to peak

2021 ◽  
Vol 39 ◽  
pp. 1-8
Author(s):  
Monoj Baruah ◽  
Anil Borah

In this study both natural ageing (NA) and artificial ageing (AA) behaviour of Al-Mg-Si aluminium alloy having trace addition of 0.04 wt.% Sn (Tin) was studied at different solution heat treatment (SHT) temperature and time, ageing time and temperatures. Microstructural analysis was performed to identify the intermetallic phases. It was observed that peak NA hardness strongly depends on the SHT temperature and time. SHT at 530 for 0.5 hour, slows down the peak NA hardness attaining time of the alloy to a maximum of 5 days. But as the SHT time increases to 3.5 hours, the peak NA hardness attaining time reduced to 1 day. Alloy SHT at 530 for 1 hour attain a maximum peak hardness of HRB 24 during 3 days of NA. Artificial ageing improved the hardness of the NA alloy to a maximum of HRB 41 during 12 hours of ageing at 190 . The overall hardness of Al-Mg-Si-Sn as-cast alloy increases by 32 % during ageing process.


2014 ◽  
Vol 937 ◽  
pp. 182-186
Author(s):  
Quan An Li ◽  
Lei Lei Chen ◽  
Wen Chuang Liu ◽  
Xing Yuan Zhang ◽  
Hui Zhen Jiang

The influence of the solution treatment (at the temperature of 500-520°C for 4-12 h) on microstructures and mechanical properties of Mg-Gd-Y-Zr alloy was investigated by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers hardness measurement. The as-cast alloy contains a microstructure consisting of α-Mg matrix, Mg5Gd phase and Mg24Y5phase. With increasing solution temperature and time, the quantity of the primary particles (Mg5Gd and Mg24Y5) in the alloy continually decreased, and the degree of recrystallization gradually increased, which result in the gradual decrease of the Vickers hardness of the solution-treated alloys.


2018 ◽  
Vol 186 ◽  
pp. 02009
Author(s):  
Dwi Ayu Nurcahyaningsih ◽  
Risly Wijanarko ◽  
Irene Angela ◽  
Bondan Tiara Sofyan

This research focused on investigating the effects of Ti addition on the age hardening response of Al 7xxx alloy for Organic Rankine Cycle (ORC) turbine impeller application in power plant generators. Al-10Zn-6Mg wt. % alloys were produced by squeeze casting with 0.02, 0.05, and 0.25 wt. % Ti addition. As-cast samples were homogenized at 400 °C for 4 h. Solution treatment was conducted at 440 °C for 1 h, followed by quenching and ageing at 130 °C for 200 h. Age hardening result was observed using Rockwell B hardness measurement. Other characterizations included impact testing, STA, optical microscopy, and SEM-EDS. Results showed that the addition of Ti in all content variations increased the as-cast hardness due to the diminution of secondary dendrite arm spacing (SDAS) values of the alloy. Ageing at 130 °C strengthened the alloys, however the addition of Ti was not found to affect neither peak hardness nor impact values of the alloy. Identities of second phases formed during solidification were found to be T (Mg32(Al,Zn)49), β (Al8Mg5), and TiAl3, while precipitates produced during ageing were GP Zone, η′, and η (MgZn2).


2016 ◽  
Vol 697 ◽  
pp. 433-436
Author(s):  
Shi Chao Zhang ◽  
Yu Feng Chen ◽  
Wei Wu ◽  
Hao Ran Sun ◽  
Guang Hai Wang ◽  
...  

In this paper, fumed nano-silica as the main raw material, nano-silica insulation materials were prepared by the dry processing. Research on humidity-reinforcement of nano-Silica insulation materials has been carried out and analyzed. When hygroscopicity of samples reach to 23%, the compressive strength 1.65MPa is at twice the one without high humidity-reinforcement, while the thermal conductivities are almost the same. Then, the action mechanism of high humidity-reinforcement method was analyzed. In humidity-reinforcement method, as vapor enters, silica sol is formed in the gap between one aggregate particle and another, and various condensation polymerization occurred in the drying process, which lead to aggregates connection and compressive strength improvement.


2007 ◽  
Vol 561-565 ◽  
pp. 291-294 ◽  
Author(s):  
Yasuhiro Uetani ◽  
Ryotaro Nagata ◽  
Hidetoshi Takagi ◽  
Kenji Matsuda ◽  
Susumu Ikeno

Rheo-extrusions of A7075 aluminum alloy were carried out utilizing semi-solid slurries with different solid granule sizes, which were made by a simple method combined a thin upright tube with a water-cooled tube. Every structure of slurries was granular and average solid granule sizes could be controlled by 0.05 to 0.11mm. These slurries were extruded to round bars at extrusion ratio of 36 and press ram speed of 10mm/s mainly, just after cooling to 833K ( fs > 0.9 ). All of the slurries could easily be extruded to bars with smooth surfaces at much low extrusion forces than those of hot-extrusions. Tensile strength of rheo-extruded bars after solution treatment increased with decreasing of the solid granule size. Peak hardness level at T6 condition equivalent to that of hot-extrusion could be obtained at the finest solid granule size.


2011 ◽  
Vol 410 ◽  
pp. 240-244 ◽  
Author(s):  
S.M.R. Ourang ◽  
A. Ekrami ◽  
S.M. Seyed Reihani ◽  
S.M.R.Mousavi Abarghouie

In the present research the aging behavior of Al6061 alloy and Al6061/SiCp composite fabricated by powder metallurgy method was investigated. The solution treatment of the samples were carried out at 527°C for 2, 3and 4 h followed by aging at 180°C for different aging times between 1 and 10 h. The existence of SiC particles led to increasing the peak hardness of the composite. The peak hardness of the composite took place at shorter times than that of the 6061 alloy for the samples solution treated for 3and 4 h, but took place at longer times for the samples solution treated for 2 h. The optimum solution treating time was about 3 h for both the composite and the 6061 alloy that led to the fastest aging kinetics and the maximum hardness. At the solution treating time shorter than 3h due to incomplete dissolution of precipitates, the aging kinetics decelerated and the hardness values decreased. For the composites solution treated more than 3 h, hardness values decreased due to the grain growth of matrix while changing in the aging kinetics was not significant. EDS and SEM studies indicated the presence of bight enrichment zones including Mg and Si elements in the composite in solution treatment conditions.


2019 ◽  
Vol 6 (6) ◽  
pp. 066515
Author(s):  
Bo Jiang ◽  
Ze-Sheng Ji ◽  
Hong-Yu Xu ◽  
Mao-Liang Hu ◽  
Yong-Bing Zhang ◽  
...  

2017 ◽  
Vol 898 ◽  
pp. 35-40 ◽  
Author(s):  
Wen Jian Lv ◽  
Bo Long Li ◽  
Peng Qi ◽  
Zuo Ren Nie

The 6061 aluminum alloys with different content of erbium were prepared. The erbium content was optimized by measurement of grain refining effects and tensile strength. After solid solution treatment of the alloy with optimized erbium content at 505 °C ~ 595 °C for 4 h. and then ageing at –160 °C ~ 200 °C for 3 h., the grain size decreased with the content of erbium, achieving the most effective grain size refinement at the erbium content of 0.15wt.%. The tensile strength of as-cast alloy could reach up to 243 MPa at the erbium content of 0.15%. -Combined with the microstructures and mechanical properties, the erbium content of 0.15% was the optimized content, and heat treatments of ageing at 180 °C for 3 h. followed by solid solution at 565 °C for 4 h were suggested.


2013 ◽  
Vol 795 ◽  
pp. 578-581 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Josef Hadipramana ◽  
Mohd Fitri Mohd Wahid ◽  
Kamarudin Hussin ◽  
Azmi Rahmat

A characterization of microstructure and interface was made on the composites Al-4 % Cu reinforced with 15 wt. % glass particulate. The composite was fabricated by powder metallurgy followed by solution treatment and artificial ageing. The microstructures of the composite showed that the glass particulates were in-homogenously distributed in the matrix and segregated near copper. The aluminum oxide layer was found between aluminum, copper and glass particulate. Micro cracks were observed in the aluminum oxide layer and at the interface between aluminum oxide layer and aluminum. Hardness increased as ageing time increased. Interface behavior and aging time influenced the hardness of the composite.


Sign in / Sign up

Export Citation Format

Share Document