Efficient Algorithms for Calculations of the Maximum Surface Form Errors in Peripheral Milling

2007 ◽  
Vol 10-12 ◽  
pp. 757-761
Author(s):  
Yong Gang Kang ◽  
Zhong Qi Wang ◽  
J.J. Wu ◽  
Cheng Yu Jiang

An efficient flexible iterative algorithm with a general approach is presented for calculations of surface form errors in peripheral milling of thin-walled workpiece. An efficient finite-element model for tool/workpiece is presented to analyze the surface dimensional errors in peripheral milling of aerospace thin-walled workpieces. The efficient flexible iterative algorithm is proposed to calculate the deflections and the maximum surface form errors as contrasted with the rigid iterative algorithm used in the literatures. Meanwhile, some key techniques such as the finite-element modeling of the tool-workpiece system; the determinant algorithm to judge instantaneous immersion boundaries between a cutter element and the workpiece; iterative scheme for the calculations of tool-workpiece deflections considering the former convergence cutting position are developed and the method for calculating the position and magnitude of the maximum surface form errors are developed and presented in detail. The proposed approach is validated and proved to be efficient through comparing the obtained numerical results with the test results.

2010 ◽  
Vol 102-104 ◽  
pp. 455-459
Author(s):  
Yong Gang Kang ◽  
Zhong Qi Wang

This paper proposes a new efficient iterative algorithm which named flexible iterative algorithm (FIAL) with a general approach suitable for surface form errors prediction in peripheral milling of thin-walled workpiece. First, a FEA-Based model is presented to analyze the surface dimensional errors in peripheral milling of thin-walled workpieces. Then the FIAL is discussed in detail for the procedure of deformation prediction. From FIAL, an iterative scheme for the calculations of tool/workpiece deflections considering the former convergence cutting position are developed,in the scheme a small variable must be included in the calculation of radial cutting depth which never been considered in the literatures before.The proposed approach is validated and proved to be efficient through comparing the obtained numerical results with the test results.


2005 ◽  
Vol 127 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Min Wan ◽  
Weihong Zhang ◽  
Kepeng Qiu ◽  
Tong Gao ◽  
Yonghong Yang

The finite element formulation is studied in this paper to predict static form errors in the peripheral milling of complex thin-walled workpieces. Key issues such as cutter modeling, finite element discretization of cutting forces, tool–workpiece coupling and variation of the workpiece’s rigidity in milling are investigated. To be able to predict static form errors on the machined surface of complex form, considerable improvements are made on the proper modeling of the material removal in milling and the iterative calculations of tool-workpiece deflections. A general simulation approach is developed based on 3D irregular finite element meshes. By using illustrative examples, rigid and flexible models are compared with existing ones to show the validity of the approach.


2014 ◽  
Vol 909 ◽  
pp. 185-191 ◽  
Author(s):  
Yong Gang Kang ◽  
Guo Rong Yang ◽  
Jie Huang ◽  
Jing Hang Zhu

Due to the deflection of tool and workpiece induced by cutting force, there is a high complexity associated with the prediction of surface form errors in the peripheral milling process of thin-walled workpieces. And the prediction of surface form errors induced by cutting deflection is the precondition for process optimization and error compensation. This paper proposes a systematic simulation procedure suitable for surface form errors prediction in peripheral milling of low rigid thin-walled workpiece. Some key algorithms with the judgment of contacts between the cutter and the workpiece, the flexible iterative algorithm as well as the tool/workpieces deflection prediction using FE model are developed and presented in detail. Comparisons of the form errors and cutting forces obtained numerically and experimentally confirm the validity of the proposed algorithms and simulation procedure.


2013 ◽  
Vol 690-693 ◽  
pp. 2554-2558
Author(s):  
Hua Jing Zhang ◽  
Zhi Tao Tang

The finite element method was adopted to predict the cutting temperature filed of workpiece surface when machining aerospace aluminum alloy 7050-T7451. Some key techniques such as the materials flow stress behavior, the separation of the chips with the workpiece, failure and fracture criterion, the tool-chip friction model were discussed in details. To validate the finite element model, the cutting temperature field of the chip was obtained by infrared thermal imaging system. The result revealed that the prediction model is credible. Based on the model, the effects of tool geometrical parameters such as flank wear, cutting edge inclination and corner radius on cutting temperature were analyzed.


2012 ◽  
Vol 189 ◽  
pp. 345-349
Author(s):  
Yu Lan Wei ◽  
Bing Li ◽  
Li Gao ◽  
Ying Jun Dai

Vibration characteristics of the thin-walled cylindrical pipe are affected by the liquid within the pipe. The natural frequencies and vibration modes of the pipe without liquid are analyzed by the theory of beam bending vibration and finite element model, which is based on the Timoshenko beam model. The first three natural frequencies and vibration modes of the pipe with or without liquid are acquired by experiments. As shown in the experiment results, the natural frequencies of the containing liquid pipe are lower than the natural frequencies of the pipe without liquid.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 555 ◽  
Author(s):  
Rafael Guerra Silva ◽  
Uwe Teicher ◽  
Alexander Brosius ◽  
Steffen Ihlenfeldt

The machining of cellular metals has been a challenge, as the resulting surface is extremely irregular, with torn off or smeared material, poor accuracy, and subsurface damage. Although cutting experiments have been carried out on cellular materials to study the influence of cutting parameters, current analytical and experimental techniques are not suitable for the analysis of heterogeneous materials. On the other hand, the finite element (FE) method has been proven a useful resource in the analysis of heterogeneous materials, such as cellular materials, metal foams, and composites. In this study, a two-dimensional finite element model of peripheral milling for cellular metals is presented. The model considers the kinematics of peripheral milling, depicting the advance of the tool into the workpiece and the interaction between the cutting edge and the mesostructure. The model is able to simulate chip separation as well as the surface and subsurface damage on the machined surface. Although the calculated average cutting force is not accurate, the model provides a reasonable estimation of maximum cutting force. The influences of mesostructure on cutting processes are highlighted and the effects in peripheral milling of cellular materials are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yiping Shen ◽  
Zhijun Zhu ◽  
Songlai Wang ◽  
Gang Wang

Tapered thin-walled structures have been widely used in wind turbine and rotor blade. In this paper, a spectral finite element model is developed to investigate tapered thin-walled beam structures, in which torsion related warping effect is included. First, a set of fully coupled governing equations are derived using Hamilton’s principle to account for axial, bending, and torsion motion. Then, the differential transform method (DTM) is applied to obtain the semianalytical solutions in order to formulate the spectral finite element. Finally, numerical simulations are conducted for tapered thin-walled wind turbine rotor blades and validated by the ANSYS. Modal frequency results agree well with the ANSYS predictions, in which approximate 30,000 shell elements were used. In the SFEM, one single spectral finite element is needed to perform such calculations because the interpolation functions are deduced from the exact semianalytical solutions. Coupled axial-bending-torsion mode shapes are obtained as well. In summary, the proposed spectral finite element model is able to accurately and efficiently to perform the modal analysis for tapered thin-walled rotor blades. These modal frequency and mode shape results are important to carry out design and performance evaluation of the tapered thin-walled structures.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


Sign in / Sign up

Export Citation Format

Share Document