scholarly journals 2D Finite Element Modeling of the Cutting Force in Peripheral Milling of Cellular Metals

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 555 ◽  
Author(s):  
Rafael Guerra Silva ◽  
Uwe Teicher ◽  
Alexander Brosius ◽  
Steffen Ihlenfeldt

The machining of cellular metals has been a challenge, as the resulting surface is extremely irregular, with torn off or smeared material, poor accuracy, and subsurface damage. Although cutting experiments have been carried out on cellular materials to study the influence of cutting parameters, current analytical and experimental techniques are not suitable for the analysis of heterogeneous materials. On the other hand, the finite element (FE) method has been proven a useful resource in the analysis of heterogeneous materials, such as cellular materials, metal foams, and composites. In this study, a two-dimensional finite element model of peripheral milling for cellular metals is presented. The model considers the kinematics of peripheral milling, depicting the advance of the tool into the workpiece and the interaction between the cutting edge and the mesostructure. The model is able to simulate chip separation as well as the surface and subsurface damage on the machined surface. Although the calculated average cutting force is not accurate, the model provides a reasonable estimation of maximum cutting force. The influences of mesostructure on cutting processes are highlighted and the effects in peripheral milling of cellular materials are discussed.

2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


2011 ◽  
Vol 70 ◽  
pp. 315-320 ◽  
Author(s):  
Riaz Muhammad ◽  
Agostino Maurotto ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

Analysis of the cutting process in machining of advanced alloys, which are typically difficult-to-machine materials, is a challenge that needs to be addressed. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece that ultimately affect the quality of the machined surface. In the present work, cutting forces generated in a vibro-impact and hot vibro-impact machining process of Ti-based alloy, using an in-house Ultrasonically Assisted Turning (UAT) setup, are studied. A three-dimensional, thermo-mechanically coupled, finite element model was developed to study the thermal and mechanical processes in the cutting zone for the various machining processes. Several advantages of ultrasonically assisted turning and hot ultrasonically assisted turning are demonstrated when compared to conventional turning.


2019 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Donato Perfetto ◽  
Giuseppe Lamanna ◽  
M. Manzo ◽  
A. Chiariello ◽  
F. di Caprio ◽  
...  

In the case of catastrophic events, such as an emergency landing, the fuselage structure is demanded to absorb most of the impact energy preserving, at the same time, a survivable space for the passengers. Moreover, the increasing trend of using composites in the aerospace field is pushing the investigation on the passive safety capabilities of such structures in order to get compliance with regulations and crashworthiness requirements. This paper deals with the development of a numerical model, based on the explicit finite element (FE) method, aimed to investigate the energy absorption capability of a full-scale 95% composite made fuselage section of a civil aircraft. A vertical drop test, performed at the Italian Aerospace Research Centre (CIRA), carried out from a height of 14 feet so to achieve a ground contact velocity of 30 feet/s in according to the FAR/CS 25, has been used to assess the prediction capabilities of the developed FE method, allowing verifying the response under dynamic load condition and the energy absorption capabilities of the designed structure. An established finite element model could be used to define the reliable crashworthiness design strategy to improve the survival chance of the passengers in events such as the investigated one.


2019 ◽  
Vol 3 (2) ◽  
pp. 36
Author(s):  
Behrouz Takabi ◽  
Bruce L. Tai

Machining of brittle materials is common in the manufacturing industry, but few modeling techniques are available to predict materials’ behavior in response to the cutting tool. The paper presents a fracture-based finite element model, named embedded cohesive zone–finite element method (ECZ–FEM). In ECZ–FEM, a network of cohesive zone (CZ) elements are embedded in the material body with regular elements to capture multiple randomized cracks during a cutting process. The CZ element is defined by the fracture energy and a scaling factor to control material ductility and chip behavior. The model is validated by an experimental study in terms of chip formation and cutting force with two different brittle materials and depths of cut. The results show that ECZ–FEM can capture various chip forms, such as dusty debris, irregular chips, and unstable crack propagation seen in the experimental cases. For the cutting force, the model can predict the relative difference among the experimental cases, but the force value is higher by 30–50%. The ECZ–FEM has demonstrated the feasibility of brittle cutting simulation with some limitations applied.


2014 ◽  
Vol 974 ◽  
pp. 389-393 ◽  
Author(s):  
Sen Liu ◽  
Dong Mei Wu ◽  
Jun Zhao

In orthopedic surgery, it is easy to do harm to surrounding tissues, so the study of bone cutting is necessary. In this article, a finite element model (FEM) of orthogonal bone cutting is developed. Cutting force intra-operatively can provide the surgeon with additional on-line information to support him to control quality of cutting surface. The obtained cutting force decreased little with cutting speed increasing, but ascended evidently with cutting depth increasing. The results of finite element simulations are aimed at providing optimization of cutting parameters and the basic information for hybrid force-velocity control of a robot-assisted bone milling system.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


2020 ◽  
Vol 63 (4) ◽  
pp. 1007-1017
Author(s):  
Luxin Xie ◽  
Jun Wang ◽  
Shaoming Cheng ◽  
Dongdong Du

HighlightsThe cutting mechanism of sugarcane stalks using single-point clamping was analyzed.Physical properties, chemical composition, and maximum cutting force of sugarcane were explored.Strong and complicated correlations between physical properties and chemical composition were established.Stress distributions in sugarcane stalks and the cutting blade were predicted using a finite element model.Abstract. Research on the cutting characteristics of sugarcane stalks is of great significance to improve harvest mechanization. In this study, perpendicular cutting of sugarcane stalks at six different nodes and internodes along the stalk was tested using a single-point clamping method at three cutting speeds (30, 40, and 50 mm min-1). The physical properties and chemical composition were also measured. At the 50 mm min-1 cutting speed, the maximum cutting forces at nodes and internodes upward along the stalk decreased gradually from 810 to 530 N and from 600 to 440 N, respectively. The maximum cutting force was positively correlated with the cutting speed at the same position. Differences in the microstructures of nodes, internodes, and epidermis were revealed by SEM micrographs. The physical properties and chemical composition of the stalks showed significant correlations. Correlation analysis was used to clarify the complicated interrelationships among these independent variables and revealed the interacting mechanism between physical properties and chemical composition. A finite element model was established to simulate the sugarcane cutting process. Results showed that the simulated cutting resistance of the blade was close to that in the experiments. The maximum Von Mises stress of the sugarcane stalk and blade in the cutting process were about 23.34 and 254.17 MPa, respectively. The results of this study provide guidance for designing and optimizing base-cutters of sugarcane harvesters and similar cutting equipment. Keywords: Chemical composition, Correlation analysis, Cutting characteristics, Microstructure, Physical properties, Simulation.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Anheng Wang ◽  
Hongqian Xue ◽  
Emin Bayraktar ◽  
Yanli Yang ◽  
Shah Saud ◽  
...  

This paper focuses on the twist defects and the control strategy in the process of four-roll bending for aluminum alloy Z-section profiles with large cross-section. A 3D finite element model (3D-FEM) of roll bending process has been developed, on the premise of the curvature radius of the profile, the particularly pronounced twist defects characteristic of 7075-O aluminum alloy Z-section profiles were studied by FE method. The simulation results showed that the effective control of the twist defects of the profile could be realized by adjusting the side roller so that the exit guide roll was higher than the entrance one (the side rolls presented an asymmetric loading mode with respect to the main rolls) and increasing the radius of upper roll. Corresponding experimental tests were carried out to verify the accuracy of the numerical analysis. The experimental results indicated that control strategies based on finite element analysis (FEA) had a significant inhibitory function on twist defects in the actual roll bending process.


Sign in / Sign up

Export Citation Format

Share Document