scholarly journals Comparative Life Cycle Assessment of Asphalt Mixtures Using Composite Admixtures of Lignin and Glass Fibers

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6589
Author(s):  
Ahmed Khater ◽  
Dong Luo ◽  
Moustafa Abdelsalam ◽  
Jianxun Ma ◽  
Mohamed Ghazy

Lignin and glass fiber were used as additives to improve the quality of road pavements and minimize moisture damage and cracking at low temperatures on asphalt pavement, according to a previous laboratory study. The aim of this paper is to make a significant contribution to the environmental assessment of the construction of road pavements using four types of asphalt mixtures based on the life cycle assessment (LCA) methodology according to the requirements of ISO 14040, considering the impact of raw material extraction, asphalt mixture manufacturing, transportation, and wearing surface construction. The results of the environmental assessment showed that all studied asphalt mixtures do not offer any improvement in all impact categories, and three modified asphalt mixtures have a slight negative effect in all impact categories. The composite mixture has the highest negative effect of the studied three modified asphalt mixtures in all categories except in the marine aquatic ecotoxicity potential category and freshwater aquatic ecotoxicity potential category, where the lignin modified asphalt mixture has the highest negative effect in these two categories but has the best environmental impacts on most of other impact categories. Furthermore, the negative effect caused by composite asphalt mixtures is minimal and thus can be used to improve the overall performance of asphalt pavement.

2019 ◽  
Vol 9 (7) ◽  
pp. 1315 ◽  
Author(s):  
Solomon Sackey ◽  
Dong-Eun Lee ◽  
Byung-Soo Kim

To combat the rutting effect and other distresses in asphalt concrete pavement, certain modifiers and additives have been developed to modify the asphalt mixture to improve its performance. Although few additives exist, nanomaterials have recently attracted significant attention from the pavement industry. Several experimental studies have shown that the use of nanomaterials to modify asphalt binder results in an improved oxidative aging property, increased resistance to the rutting effect, and improves the rheological properties of the asphalt mixture. However, despite the numerous benefits of using nanomaterials in asphalt binders and materials, there are various uncertainties regarding the environmental impacts of nano-modified asphalt mixtures (NMAM). Therefore, this study assessed a Nano-Silica-Modified Asphalt Mixtures in terms of materials production emissions through the Life Cycle Assessment methodology (LCA), and the results were compared to a conventional asphalt mixture to understand the impact contribution of nano-silica in asphalt mixtures. To be able to compare the relative significance of each impact category, the normalized score for each impact category was calculated using the impact scores and the normalization factors. The results showed that NMAM had a global warming potential of 7.44563 × 103 kg CO2-Eq per functional unit (FU) compared to 7.41900 × 103 kg CO2-Eq per functional unit of the conventional asphalt mixture. The application of LCA to NMAM has the potential to guide decision-makers on the selection of pavement modification additives to realize the benefits of using nanomaterials in pavements while avoiding potential environmental risks.


2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.


2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


2015 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Marián Dubravský ◽  
Ján Mandula

Abstract In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic – mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.


2013 ◽  
Vol 438-439 ◽  
pp. 391-394 ◽  
Author(s):  
Yuan Zhao Chen ◽  
Zhen Xia Li

According to high temperature weak stability of common asphalt mixture, rutting tests of diatomite modified asphalt mixture, modified lake asphalt mixture, modified rock asphalt mixture and common asphalt mixture are carried out. Changes of dynamic stability for common asphalt mixture compared with modified asphalt mixtures are comparatively analysed. The results show that compared with common asphalt mixture, rutting resistances of diatomite modified asphalt mixture, modified lake asphalt mixture and modified rock asphalt mixture are greatly improved. It is proposed that those kinds of modified asphalt mixture are adopted in asphalt pavement of large longitudinal slope section.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Haibin Deng ◽  
Deyi Deng ◽  
Yinfei Du ◽  
Xinmin Lu

This study aims to enhance the thermal resistance of asphalt mixture to cool asphalt pavement. Four kinds of asphalt mixtures were prepared by replacing basalt aggregate and limestone mineral powder with shale ceramsite (SC) and fly ash cenosphere (FAC), respectively. A series of experiments, including environment scanning electron microscope test, thermophysical parameter test, indoor irradiation test, shear strength test, and rutting test, were performed to verify the purpose of this study. The results show that using low-density SC and FAC could produce lightweight asphalt mixtures, which had lower thermal conductivity than control asphalt mixture. The indoor irradiation test shows that the resultant asphalt mixtures had lower temperatures at the depth of lower than 4 cm. The addition of SC had a negative effect on the shear strength and dynamic stability of asphalt mixture. However, the two indicators increased due to the addition of FAC. The results presented in this study indicate that it is feasible to use lightweight aggregate to prepare low-thermal-conductivity asphalt mixture and use this kind of asphalt mixture to cool asphalt pavement.


2021 ◽  
Vol 13 (5) ◽  
pp. 2458
Author(s):  
Alejandra Balaguera ◽  
Jaume Alberti ◽  
Gloria I. Carvajal ◽  
Pere Fullana-i-Palmer

Roads with low traffic volume link rural settlements together and connect them with urban centres, mobilising goods and agricultural products, and facilitating the transportation of people. In Colombia, most of these roads are in poor conditions, causing social, economic, and environmental problems, and significantly affecting the mobility, security, and economic progress of the country and its inhabitants. Therefore, it is essential to implement strategies to improve such roads, keeping in mind technical, economic, and environmental criteria. This article shows the results of the application of the environmental life cycle assessment—LCA—to sections of two low-traffic roads located in two different sites in Colombia: one in the Urrao area (Antioquia), located in the centre of the country; and another in La Paz (Cesar), located in the northeast of the country. Each segment was stabilised with alternative materials such as brick dust, fly ash, sulfonated oil, and polymer. The analysis was carried out in three stages: the first was the manufacture of the stabiliser; the second included preliminary actions that ranged from the search for the material to its placement on site; and the third was the stabilisation process, which included the entire application process, from the stabiliser to the road. The environmental impacts are mainly found in the manufacture of stabilisers (60% of the total), for sulfonated oil or polymer, due to the different compounds used during production, before their use as stabilisers. The impact categories with the greatest influence were abiotic depletion potential (ADP), global warming potential (GWP) and terrestrial ecotoxicity potential (TETP). For the stabilisation stage (impact between 40% and 99%), ash and brick dust have the highest impacts. The impact categories most influenced in this stage were: acidification potential (AP), freshwater aquatic ecotoxicity potential (FAETP), human toxicity potential (HTP), marine aquatic ecotoxicity potential (MAETP) and photochemical ozone creation potential (POCP).


2019 ◽  
Vol 9 (5) ◽  
pp. 870 ◽  
Author(s):  
Limin Li ◽  
Zhaoyi He ◽  
Weidong Liu ◽  
Cheng Hu

To solve the early rutting failure of asphalt pavement, the application of rock asphalt from Sichuan, China, based on anti-rutting performance, was studied. Preparations of North Sichuan rock asphalt (NS RA) and NS RA-modified asphalt mixture were elaborated in detail. Using Zhonghai AH-70 asphalt, Esso AH-70 asphalt, North American rock asphalt (NA RA) and NS RA, the performances of NS RA modified asphalt were researched based on index tests, Brookfield rotary viscosity test and bending beam rheometer test. A performance verification of NS RA-modified asphalt was carried out using rutting calculation, the rutting, indirect tensile fatigue, freeze–thaw split and small beam bending tests based on five kinds of selected gradations. The results indicated that in comparison with NA RA, the NS RA has a good modification effect as well. The NS RA can obviously improve the anti-rutting ability of the asphalt binder, and it can enhance its anti-aging performance as well. For the NS RA-modified asphalt mixture, it is feasible to determine the optimum NS RA content, based on its anti-rutting performance, and its optimum NS RA content is about 8%. The dynamic stability values of NS RA-modified asphalt mixtures are at least 3-fold higher than those of the base asphalt mixtures, and they are all far greater than the summer hot area requirement (no less than 2800 times/mm). NS RA-modified asphalt mixtures used in the middle course of asphalt pavement can obviously improve the anti-rutting performance of the pavement, and to enhance the anti-rutting ability of pavements, it should be used in the middle course of the pavement. The fatigue life values of NS RA-modified asphalt mixtures are at least 14.5-fold higher than those of the base asphalt mixtures. The freeze–thaw splitting strength ratio values of NS RA-modified asphalt mixtures are improved by at least 9.5% over the base asphalt mixtures, and their freeze–thaw splitting strength ratio values are all greater than the requirement (no less than 75%). In comparison with the base asphalt, the low temperature performances of NS RA-modified asphalt and its mixtures slightly decline, but they can meet the requirements for the zones with a minimum temperature of no less than –21.5 °C too. Therefore, except for the extremely low temperature area, it is an effective method for solving the rutting problem of pavement for using NS RA-modified asphalt.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4552
Author(s):  
Patrycja Bałdowska-Witos ◽  
Izabela Piasecka ◽  
Józef Flizikowski ◽  
Andrzej Tomporowski ◽  
Adam Idzikowski ◽  
...  

The article characterizes selected issues related to the method of performing environmental impact analyses. Particular attention was paid to the need for identifying environmental effects associated with the process of shaping beverage bottles. This study concerns the analysis of selected stages of the machine’s life cycle environmental impact in the specific case of the blow molding machine used in the production of bottles. Life cycle assessment analysis was performed using the SimaPro 8.4.0 software (The Dutch Company Pre Consultants). The CML 2 and ReCiPe2016 methods were chosen to interpret the lists of chemical emissions. Impact categories specific to the CML 2 model are: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation. Among all the considered impact categories, marine aquatic ecotoxicity was characterized by the highest level of potential harmful effects occurring during the bottle production process. A new aspect of the research is to provide updated and more detailed geographic data on Polish bottle production.


Sign in / Sign up

Export Citation Format

Share Document