Engineering Applications of Satellite Structural Optimization Utilizing ANSYS/CATIA

2011 ◽  
Vol 110-116 ◽  
pp. 1567-1575
Author(s):  
Jia Mao ◽  
Wei Hua Zhang

A structured frame for the design optimization problem of satellite platform structure was established through the definition, flow and modification research of design parameters in the ANSYS/CATIA system. Problems with creating complex satellite structure FEA (Finite Element Analysis) models were discussed, including the idealization of real structure, as well as embedment of APDL (ANSYS Parametric Design Language) programme developed specially for the pre-processing and post-processing of FEA model. The optimization model was established under structural design requirements, and a graded optimization method was applied for calculation. Light-weight design schemes for two satellite platform structure were obtained through the subsequently optimization implemented using approaches put forward previously. The optimization design problems of two satellite platform structure were settled well, and work done in this paper provides certain reference value for optimization of other spacecraft structures.

2012 ◽  
Vol 479-481 ◽  
pp. 2511-2516
Author(s):  
Hong Bing Huang ◽  
Yong Ming Wang ◽  
Tong Hua Fan

The wheel-legged rover with a double-half-revolution mechanism uses two tandem planetary gear trains to drive. Its virtual prototype model was built in COSMOS Motion software, and the mechanical data of each gears of the wheel-legged rover were obtained by dynamic simulation under the typical working conditions. On this basis, the finite element analysis model of the wheel-leg planetary gear was established and its stress analysis was done. The discrete optimization mathematical model was built with the optimization target of minimizing the rover’s wheel-leg planetary gear volume and the constraint condition of keeping the Mises stress applied on the dedendum under the admissible Mises stress. Based on ANSYS Parametric Design Language (APDL), the optimization design was done for the above gear based on discrete optimization method. The result shows that the optimized gear not only meets the strength requirement, but also its weight is 58% lower than the original, which will provide a new effective method for optimizing the wheel-leg structure of the rover.


2011 ◽  
Vol 121-126 ◽  
pp. 3386-3390
Author(s):  
Gui Hua Han ◽  
Bing Wei Gao ◽  
Yun Fei Wang ◽  
Gui Tao Sun ◽  
Di Wu ◽  
...  

In order to improve the dynamic characteristics of crossbeam of heavy NC gantry moving boring & milling machine, the ribbed slab structure of beam were analyzed and optimized with the finite element analysis software, and the comprehensive optimization method of the number, size and layout of ribbed slab were putted forward based on the classification of ribbed slab structure. According to the result of the finite element analysis, the internal type and horizontal spacing of ribbed slab are optimized to get the best number, spacing, thickness and height of ribbed slab; Under the required intensity, stiffness and stability conditions materials are distributed reasonably to reduce beam weight which make little deformation and the uniform stress distribution. The comprehensive optimization method study has reference value for ribbed slab structure design.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sina Hamian ◽  
Andrew M. Gauffreau ◽  
Timothy Walsh ◽  
Jungchul Lee ◽  
Keunhan Park

This paper reports the frequency-dependent electrothermal behaviors of a freestanding doped-silicon heated microcantilever probe operating under periodic (ac) Joule heating. We conducted a frequency-domain finite-element analysis (FEA) and compared the steady periodic solution with 3ω experiment results. The computed thermal transfer function of the cantilever accurately predicts the ac electrothermal behaviors over a full spectrum of operational frequencies, which could not be accomplished with the 1D approximation. In addition, the thermal transfer functions of the cantilever in vacuum and in air were compared, through which the frequency-dependent heat transfer coefficient of the air was quantified. With the developed FEA model, design parameters of the cantilever (i.e., the size and the constriction width of the cantilever heater) and their effects on the ac electrothermal behaviors were carefully investigated. Although this work focused on doped-Si heated microcantilever probes, the developed FEA model can be applied for the ac electrothermal analysis of general microelectromechanical systems.


2012 ◽  
Vol 538-541 ◽  
pp. 3249-3252
Author(s):  
Yang Gao ◽  
Lu Yu Huang ◽  
He Zhang

By using the finite element analysis software ANSYS, this article presented the structure stress and displacement of a type of electrical dust precipitator on a variety of loads effect, after the main steel structures of the model was built according to the frontal solution method, optimization design of model's main steel structures had been done. The modeling and the computational Method has been proved the reasonableness of precision, and can be further used for structure analysis and so it has reference value for optimization design of other electrical precipitator steel structures.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.


2013 ◽  
Vol 427-429 ◽  
pp. 90-93 ◽  
Author(s):  
Wen Qing Wang

Based on the principle of orthogonal test, the optimization model of sunflower shaped arch bridge scheme was set up. The five key design parameters were selected as the main factors. The four computation index, which reflect mechanical performance, were selected as analytical objects. The 16 orthogonal experiment schemes were arranged with four levels orthogonal table . The curves of the factors to the index were obtained from the mechanical response under dead load and live load through the finite element analysis model. By the range analysis method, the influential levels of the factors to the index were obtained from the result of the test , and the factor optimizatuion level of the factors was determined to further optimize the layout scheme of the sunfloawer shaped arch bridge.


2014 ◽  
Vol 685 ◽  
pp. 684-689
Author(s):  
Xiang Fu ◽  
Xi Lu ◽  
Jing Wen

NC Turrets include Servo Turrets and Power Turrets. The structural differences of them are addressed. In this paper, data storage structures of turret parts, turret automatically assembled, finite element analysis, optimization design and 3D model browse in the WEB are studied. Based on the construction of B/S, a NC Turret rapid development platform which is composed by Network user tier, WEB business tier and Data tier is constructed. The platform integrates a CAE analysis module based on ANSYS, a parametric design module based on SolidWorks and a reliability analysis module based on MATLAB. The Rapid Development Platform can perform the new product design and reliability analysis, and an optimal develpoment design of NC Turrets can be realized rapidly and efficiently.


Sign in / Sign up

Export Citation Format

Share Document