Wind Tunnel Experiment for Low Wind Speed Wind Turbine Blade

2011 ◽  
Vol 110-116 ◽  
pp. 1589-1593
Author(s):  
Mohd Noh Mohd Hafiz ◽  
Abdul Hamid Ahmad Hussein ◽  
Rashid Helmi ◽  
Wisnoe Wirachman ◽  
Syahmi Nasir Mohd

Environment and green energy awareness are two main factors why this study has been carried out. This research is focused on aerodynamics study for airfoil structure modification based on NACA 0044 and NACA 0063 by using wind tunnel experiment. Aerodynamic characteristics such as lift coefficient, CL, drag coefficient, CD, lift to drag ratio and cell relative velocity has been investigated in this study. CFD simulation has been carried out at the early stage of the investigation (for NACA 0044 and NACA 0063), and a new airfoil profile had been created (0044-63) by modified the chord length and the location of maximum thickness of the airfoil by using the modified NACA Four-Digit Series. Wind tunnel experiment has been take place for three different wind speeds from 25m/s, 35m/s and 45m/s at various angles of attack from 0o to 40o with 5o incremental for the respective airfoil. The results show that the modified 0044-63 produced the better lift coefficient and this airfoil has been fabricated and tested in the wind tunnel experiment in order to validate the CFD result. This paper reports the result of aerodynamics characteristics for respective new airfoil and it shows that at angle of attack between 5 o to 15 o, this airfoil produced good lift to drag ratio value. Also, by modified the location of maximum thickness 30% to the trailing edge give the increment of lift to drag ratio produced approximately 15% and at the same time, give insignificant changes to the drag coefficient value.

2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


2011 ◽  
Vol 138-139 ◽  
pp. 229-233
Author(s):  
Pei Qing Liu ◽  
Shuo Yang ◽  
Yun Tian

During airplane’s take-off, higher lift force should be provided by wing used high lift devices, and the drag should be lower. The design basis of high lift devices with good aerodynamic characteristic is the design of the multi-element airfoil. When a multi-element airfoil is used Gurney flap, lift coefficient can be improved while drag coefficient is also increased, but the lift-to-drag ratio is reduced. In this paper, the numerical simulation method is used to study the aerodynamic characteristic of the multi-element airfoil used Gurney flap with slat in the configuration of take-off. Lift coefficient and drag coefficient of the multi-element airfoil with Gurney flap can be reduced by slat while lift-to-drag ratio of airfoil is increased. Through the comparisons of the multi-element airfoils with Gurney flap with different types of slats, the optimized multi-element airfoil with higher lift coefficient and lower drag coefficient is obtained ultimately.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012066
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The NACA4415 airfoil was numerically simulated with the help of the Fluent software to analyze its aerodynamic characteristics. Results are acquired as follows: The calculation accuracy of Fluent software is much higher than that of XFOIL software; the calculation result of SST k-ω(sstkw) turbulence model is closest to the experimental value; within a certain range, the larger the Reynolds number is, the larger the lift coefficient and lift-to-drag ratio of the airfoil will be, and the smaller the drag coefficient will be; when the angle of attack is less than the optimal angle of attack, the Reynolds number has less influence on the lift-to-drag coefficient and the lift-to-drag ratio; as the Reynolds number increases, the optimal angle of attack increases slightly, and the applicable angle of attack range for high lift-to-drag ratios becomes smaller.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012078
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The aerodynamic characteristics of NACA4412 airfoil with different pitching motion elements were compared and analyzed based on CFD in this research. The results are acquired as follows: the difference between the lift and drag coefficients of the airfoil during pitch up and pitch down motions becomes larger with the increase of the pitching amplitude or initial angle of attack; as the pitching amplitude increases, the lift coefficient grows slightly greater and the drag coefficient grows much greater; as the initial angle of attack increases, the lift coefficient grows much greater and the drag coefficient grows slightly; the smaller the attenuation frequency is, the larger the lift-to-drag ratio of the airfoil will be.


Author(s):  
Michał FRANT ◽  
Stanisław WRZESIEŃ ◽  
Maciej MAJCHER

This paper presents the results of experimental determination of the impact of floats on the aerodynamic characteristics of an OSA model in symmetric flow. The studies have been performed in the low-speed wind tunnel at the Military University of Technology (MUT, Warsaw, Poland). The aircraft model was examined at the dynamic pressure q = 500 Pa in the following angle of attack range = -2828. The investigations have been performed for an aircraft model under plain configuration with floats and without floats. The influence of elevator and flap inclination on the aerodynamic characteristics of the model has also been analysed. The obtained values of aerodynamic drag coefficient, lift coefficient, pitching moment coefficient and lift-to-drag ratio have been presented in the form of tables and graphs. The studies performed demonstrated that the use of floats causes the increase of aerodynamic drag coefficient CD, maximum lift coefficient CLmax as well as critical angle of attack cr. The decrease of lift-to-drag ratio has also been observed. Its value in the case of the model with floats was up to 20% lower than in the model without floats. The studies also showed that the model equipped with floats had a lower longitudinal static stability margin than the model without floats.


2018 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of angle of attack, Reynold numbers and winglet structure on the performance of Cessna 172 Skyhawk aircraft with winglets variation design. Winglets improve efficiency by diffusing the shed wingtip vortex, which reducing the drag due to lift and improving the wing’s lift over drag ratio. In this research, the specimens are the duplicated of Cesnna 172 Skyhawk wing with 1:40 ratio made of balsa wood. There are three different winglet designs that are compared with the one without winglet. The experiments are conducted in an open wind tunnel to measure the lift and drag force with Reynold numbers of 25,000 and 33,000. It can be concluded that the wings with winglets have higher lift coefficient than wing without winglet for both Reynold numbers. It was also found that all wings with winglets have higher lift-to-drag ratio than wings without winglet where the blended 45o cant angle has the highest value.


2021 ◽  
Vol 11 (9) ◽  
pp. 3791
Author(s):  
Md Tausif Akram ◽  
Man-Hoe Kim

This paper presents the parameterization and optimization of two well-known airfoils. The aerodynamic shape optimization investigation includes the subsonic (NREL S-821) and transonic airfoils (RAE-2822). The class shape transformation is employed for parametrization while the genetic algorithm is used for optimization purposes. The absolute scheme of the optimization process is carried out for the minimization of the drag coefficient and maximization of lift to drag ratio. In-house MATLAB code is incorporated with a genetic algorithm to calculate the drag coefficient and lift to drag ratio of the resulting optimized airfoil. The panel method is utilized in genetic algorithm optimization code to calculate pressure distribution, lift coefficient, and lift to drag ratio for optimized airfoil shapes and validates with XFOIL and NREL experimental data. Furthermore, CFD analysis is conducted for both the original (NREL S-821) and optimized airfoil obtained. The present method shows that the optimized airfoil achieved an improvement in lift to drag ratio by 7.4% and 15.9% of S-821 and RAE-2822 airfoil, respectively, by the panel technique method and provides high design desirable stability parameters. These features significantly improve the overall aerodynamic performance of the newly optimized airfoils. Finally, the improved aerodynamics results are reported for the design of turbulence modeling and NREL phase II, Phase III, and Phase VI HAWT blades.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 37
Author(s):  
A M Ahmad ◽  
R E M Nasir ◽  
Z A A Latif ◽  
W Kuntjoro ◽  
W Wisnoe ◽  
...  

Baseline 7 Blended Wing-Body design is introduced to study the behaviour of the control surfaces, given four elevons without vertical stabilizer and wingtip. The objective of the paper is to obtain an aerodynamic characteristic of a cranked planform blended wing-body aircraft. The airfoil used for the entire body is NACA 2412, which is selected for ease of fabrication process. The wingspan of the model is 1.4 m with 0.2 m thickness. The sweep angle of the model is fixed to 400. The wingspan area is calculated at 0.405 m2. The experiment is conducted at UTM-LST Wind Tunnel, AEROLAB, Skudai, Johor with test wind speed of 15 m/s. The maximum lift-to-drag ratio for the model is found to be around 21.9, which is better than many conventional aircraft. Nonetheless, the parabolic regression made to the drag versus lift plot only yields maximum lift-to-drag ratio of 10.0. The value of drag coefficient at zero lift is 0.012 while the maximum lift coefficient found is at 0.65 at 150 angle of attack. The lift-to-drag ratio improves 38.3% from 15.9 in the previously-published design. The neutral point is found to be located at 30.6% of the mean geometric chord in front of the wind tunnel model reference center or about 0.398 m from the nose of the 0.63 m long aircraft model or at 63.1% of aircraft length from the nose.  


Author(s):  
Saurabh Sharma ◽  
Shibu Clement

Ground effect is a phenomenon caused by the presence of a fixed boundary layer below a wing. This results in an effective increase in lift to drag ratio of the airfoil. The available literature on this phenomenon is very limited; also the types of airfoils used in traditional aircrafts are not suited for ground effect vehicles, so a computational study has been done comparing traditional airfoils (NACA series) with ground effect airfoil (DHMTU). In this paper, the aerodynamic characteristics of a NACA 6409, NACA 0012, DHMTU 12-35.3-10.2-80.12.2[1] section in ground effect were numerically studied and compared. In 2D simulation, the flow around each of the airfoils has been investigated for different turbulence models viz. Spalart Allmaras turbulence model and k-ε Realizable turbulence models. Lift coefficient, drag coefficient, pitching moment coefficient and lift to drag ratio of each airfoil was determined on several angles of attack from 0 to 10° (0°, 2°, 4°, 6°, 8°, 10°) and different ground clearances (h/c=0.2, 0.4, 0.6, 0.8, 1.0). The results of the CFD simulation indicate a reduction in drag coefficient and an increase in lift coefficient, thus an overall increment in lift to drag ratio of the airfoils, when flying in proximity to the ground. Also DHMTU airfoils have shown a greater consistency in Cm behavior with decreasing height-to-chord (h/c) ratio.


Sign in / Sign up

Export Citation Format

Share Document