Study of Laminar Horseshoe Vortex Using Particle Image Velocimetry

2011 ◽  
Vol 110-116 ◽  
pp. 3249-3254
Author(s):  
Zaw Zaw Oo ◽  
Muhammad Younis Yamin ◽  
Hua Zhang ◽  
Muhammad Zaka ◽  
Bo Hu

—This study investigates the upstream of the juncture flows generated by the circular cross section cylindrical body mounted on a flat plate using PIV (Particle Image Velocimetry) technique. The flow structure of laminar horseshoe vortex and a topological insight into the flow pattern of the vortex system were observed. Vortex structures for ReD(Diameter Reynolds number) 1600, 2000, 2400 and 3500 are predicted and discussed in detail. Experiments were conducted to investigate the structure of steady and periodic horseshoe vortex, the effect of Diameter Reynolds number, location of horseshoe vortex core and its variation with the change in Diameter Reynolds number and the location and nature of the saddle point located most upstream of the leading edge of the cylinder. The results revealed that (a) two different flow regimes were observed corresponding to four Reynolds number ranges; (b) the upstream vortex systems approach closer to the cylinder whereas the distance of saddle point located upstream of the leading edge of the cylinder moves away from the wall when the Reynolds number increases.

2019 ◽  
Vol 22 (7) ◽  
pp. 1769-1782 ◽  
Author(s):  
ZR Shu ◽  
QS Li

This article presents a comprehensive investigation on the separated and reattaching flows over a blunt flat plate with different leading-edge shapes by means of particle image velocimetry and surface pressure measurements. Wind tunnel tests are performed in both smooth and various turbulent flow conditions, and the separated and reattaching flows are examined as a function of Reynolds number ( Re), leading-edge shape, turbulence intensity, and turbulence integral length scale. It is shown through the particle image velocimetry and pressure measurements that the Reynolds number effect is significant regarding the mean vorticity field, but with little effect on the mean velocity field. For the effects of leading-edge shape, the distributions of pressure coefficients respond strongly to the change in leading-edge angle, and both the velocity (streamwise and vertical) and vorticity fields have a clear dependence on the leading-edge shape. For the effects of freestream turbulence, the mean pressure coefficient responds strongly to turbulence intensity, whereas the fluctuating and peak suction pressure coefficients are dependent on both turbulence intensity and integral length scale. The size of the separation bubble contracts aggressively with increasing turbulence intensity, but it remains approximately invariant in response to the change in turbulence scale in the tested range.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Patrick R. Richard ◽  
Stephen John Wilkins ◽  
Joseph W. Hall

Air traffic volume is expected to triple in the U.S. and Europe by 2025, and as a result, the aerospace industry is facing stricter noise regulations. Apart from the engines, one of the significant contributors of aircraft noise is the deployment of high-lift devices, like leading-edge slats. The unsteady turbulent flow over a leading-edge slat is studied herein. In particular, particle image velocimetry (PIV) measurements were performed on a scale-model wing equipped with a leading-edge slat in the H.J. Irving–J.C.C. Picot Wind Tunnel. Two Reynolds numbers based on wing chord were studied: Re = 6 × 105 and 1.3 × 106. A snapshot proper orthogonal decomposition (POD) analysis indicated that differences in the time-averaged statistics between the two Reynolds numbers were tied to differences in the coherent structures formed in the slat cove shear layer. In particular, the lower Reynolds number flow seemed to be dominated by a large-scale vortex formed in the slat cove that was related to the unsteady flapping and subsequent impingement of the shear layer onto the underside of the slat. A train of smaller, more regular vortices was detected for the larger Reynolds number case, which seemed to cause the shear layer to be less curved and impinge closer to the tail of the slat than for the lower Reynolds number case. The smaller structures are consistent with Rossiter modes being excited within the slat cove. The impingement of the shear layers on and the proximity of the vortices to the slat and the main wing are expected to be strong acoustic dipoles in both cases.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sayantan Bhattacharya ◽  
Reid A. Berdanier ◽  
Pavlos P. Vlachos ◽  
Nicole L. Key

Nonintrusive measurement techniques such as particle image velocimetry (PIV) are growing in both capability and utility for turbomachinery applications. However, the restrictive optical access afforded by multistage research compressors typically requires the use of a periscope probe to introduce the laser sheet for measurements in a rotor passage. This paper demonstrates the capability to perform three-dimensional PIV in a multistage compressor without the need for intrusive optical probes and requiring only line-of-sight optical access. The results collected from the embedded second stage of a three-stage axial compressor highlight the rotor tip leakage flow, and PIV measurements are qualitatively compared with high-frequency response piezoresistive pressure measurements to assess the tip leakage flow identification.


2004 ◽  
Author(s):  
Meredith R. Martin

The transition from laminar to turbulent in-tube flow is studied in this paper. Water flow in a glass tube with an inside diameter of 21.7 mm was investigated by two methods. First, a dye visualization test using a setup similar to the 1883 experiment of Osborne Reynolds was conducted. For the dye visualization, Reynolds numbers ranging from approximately 1000 to 3500 were tested and the transition from laminar to turbulent flow was observed between Reynolds numbers of 2500 and 3500. For the second method, a particle image velocimetry (PIV) system was used to measure the velocity profiles of flow in the same glass tube at Reynolds numbers ranging from approximately 500 to 9000. The resulting velocity profiles were compared to theoretical laminar profiles and empirical turbulent power-law profiles. Good agreement was found between the lower Reynolds number flow and the laminar profile, and between the higher Reynolds number flow and turbulent power-law profile. In between the flow appeared to be in a transition region and deviated some between the two profiles.


2016 ◽  
Vol 804 ◽  
pp. 278-297 ◽  
Author(s):  
J. P. J. Stevenson ◽  
K. P. Nolan ◽  
E. J. Walsh

The free shear layer that separates from the leading edge of a round-nosed plate has been studied under conditions of low (background) and elevated (grid-generated) free stream turbulence (FST) using high-fidelity particle image velocimetry. Transition occurs after separation in each case, followed by reattachment to the flat surface of the plate downstream. A bubble of reverse flow is thereby formed. First, we find that, under elevated (7 %) FST, the time-mean bubble is almost threefold shorter due to an accelerated transition of the shear layer. Quadrant analysis of the Reynolds stresses reveals the presence of slender, highly coherent fluctuations amid the laminar part of the shear layer that are reminiscent of the boundary-layer streaks seen in bypass transition. Instability and the roll-up of vortices then follow near the crest of the shear layer. These vortices are also present under low FST and in both cases are found to make significant contributions to the production of Reynolds stress over the rear of the bubble. But their role in reattachment, whilst important, is not yet fully clear. Instantaneous flow fields from the low-FST case reveal that the bubble of reverse flow often breaks up into two or more parts, thereby complicating the overall reattachment process. We therefore suggest that the downstream end of the ‘separation isoline’ (the locus of zero absolute streamwise velocity that extends unbroken from the leading edge) be used to define the instantaneous reattachment point. A histogram of this point is found to be bimodal: the upstream peak coincides with the location of roll-up, whereas the downstream mode may suggest a ‘flapping’ motion.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ahmad Falahatpisheh ◽  
Arash Kheradvar

Introduction: The two-dimensional (2D) echocardiographic particle image velocimetry technique that was introduced in 2010 received much attention in clinical cardiology. Cardiac flow visualization based on contrast echocardiography results in images with high temporal resolution that are obtainable at relatively low cost. This makes it an ideal diagnostic and follow-up tool for routine clinical use. However, cardiac flow in a cardiac cycle is multidirectional with a tendency to spin in three dimensions rather than two-dimensional curl. Here, for the first time, we introduce a volumetric echocardiographic particle image velocimetry technique that robustly acquires the flow in three spatial dimensions and in time: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV). Methods: V-Echo-PIV technique utilizes matrix array 3D ultrasound probes to capture the flow seeded with an ultrasound contrast agent (Definity). For this feasibility study, we used a pulse duplicator with a silicone ventricular sac along with bioprosthetic heart valves at the inlet and outlet. GE Vivid E9 system with an Active Matrix 4D Volume Phased Array probe at 30 Hz was used to capture the flow data (Figure 1). Results: The 3D particle field was obtained with excellent spatial resolution without significant noise (Figure 1). 3D velocity field was successfully captured for multiple cardiac cycles. Flow features are shown in Figure 2 where the velocity vectors in two selected slices and some streamlines in 3D space are depicted. Conclusions: We report successful completion of the feasibility studies for volumetric echocardiographic PIV in an LV phantom. The small-scale features of flow in the LV phantom were revealed by this technique. Validation and human studies are currently in progress.


Sign in / Sign up

Export Citation Format

Share Document