A Simplified Cascaded Modular Structure for the Implementation of MVDR Detector

2011 ◽  
Vol 128-129 ◽  
pp. 491-494
Author(s):  
Zhong Jie Li ◽  
Cui Tao Zhu ◽  
Shao Ping Chen

A cascaded modular structure is proposed to implement the blind MVDR detector. In each module of the structure, a vector filter is introduced for adaptive interference cancellation. The weight vector is determined based on a maximum magnitude cross correlation criterion which maximizes the magnitude of the cross correlation between the output of the nonadaptive filter and that of the weight vector filter. The performance of the proposed receiver has been evaluated via computer simulation and shown to be comparable to that of the optimum method under asymptotic condition. When the number of received vectors is non-ideal, the proposed method outperform the optimum method.

2010 ◽  
Vol 439-440 ◽  
pp. 715-720
Author(s):  
Jun Yao Gao ◽  
Jing Shu Yang ◽  
Jia Zhao

The paper investigates the cross correlation mitigation (CCM) technique in the multipath propagating environment. It analyses the impact of cross correlation firstly, then expounds the universal technique in CCM, at last presents an improved DPIC (Delayed Parallel Interference Cancellation) method based on MEDLL. The algorithm estimates the parameters of multipath by using MEDLL, reconstructs the strong signals IF utilizing these parameters, and mitigates the cross correlation with the aid of DPIC method. At last, simulation results prove the validity of this method.


2014 ◽  
Vol 1006-1007 ◽  
pp. 1066-1070
Author(s):  
Ying Hai ◽  
Jing Yu Chen

In this paper, the rotational invariance technique (ESPRIT) based on the cross-correlation matrix is used to estimate the power quality indices (PQI) . This method enables the alleviation of the effects of additive noise, and improves the computational efficiency. Computer simulation and experimental were performed on synthesized signals to assess the performance of the method.


Author(s):  
Matthias Weber ◽  
Anja Niehoff ◽  
Markus A. Rothschild

AbstractThis work deals with the examination of tool marks in human cartilage. We compared the effectiveness of several cleaning methods on cut marks in porcine cartilage. The method cleaning by multiple casts achieved the significantly highest scores (P = 0.02). Furthermore, we examined the grain-like elevations (dots) located on casts of cut cartilage. The results of this study suggest that the casting material forms these dots when penetrating cartilage cavities, which are areas where the strong collagen fibres leave space for the chondrocytes. We performed fixation experiments to avoid this, without success. In addition, 31 casting materials were compared regarding contrast under light-microscope and 3D tool marks scanner. Under the light-microscope, brown materials achieved significantly higher values than grey (P = 0.02) or black (P = 0.00) whereas under the 3D scanner, black materials reached higher contrast values than grey (P = 0.04) or brown (P = 0.047). To compare the accuracy and reproducibility of 6 test materials for cartilage, we used 10 knives to create cut marks that were subsequently scanned. During the alignment of the individual signals of each mark, the cross-correlation coefficients (Xmax) and lags (LXmax) were calculated. The signals of the marks in agarose were aligned with significantly fewer lags and achieved significantly higher cross-correlation coefficients compared to all tested materials (both P = 0.00). Moreover, we determined the cross-correlation coefficients (XC) for known-matches (KM) per material. Agarose achieved significantly higher values than AccuTrans®, Clear Ballistics™, and gelatine (all P = 0.00). The results of this work provide valuable insights for the forensic investigation of marks in human costal cartilage.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Jun Lu ◽  
Qunfei Zhang ◽  
Wentao Shi ◽  
Lingling Zhang ◽  
Juan Shi

Self-interference (SI) is usually generated by the simultaneous transmission and reception in the same system, and the variable SI channel and impulsive noise make it difficult to eliminate. Therefore, this paper proposes an adaptive digital SI cancellation algorithm, which is an improved normalized sub-band adaptive filtering (NSAF) algorithm based on the sparsity of the SI channel and the arctangent cost function. The weight vector is hardly updated when the impulsive noise occurs, and the iteration error resulting from impulsive noise is significantly reduced. Another major factor affecting the performance of SI cancellation is the variable SI channel. To solve this problem, the sparsity of the SI channel is estimated with the estimation of the weight vector at each iteration, and it is used to adjust the weight vector. Then, the convergence performance and calculation complexity are analyzed theoretically. Simulation results indicate that the proposed algorithm has better performance than the referenced algorithms.


2019 ◽  
Vol 11 (12) ◽  
pp. 1428 ◽  
Author(s):  
Yong Jia ◽  
Yong Guo ◽  
Chao Yan ◽  
Haoxuan Sheng ◽  
Guolong Cui ◽  
...  

This paper demonstrates the feasibility of detection and localization of multiple stationary human targets based on cross-correlation of the dual-station stepped-frequency continuous-wave (SFCW) radars. Firstly, a cross-correlation operation is performed on the preprocessed pulse signals of two SFCW radars at different locations to obtain the correlation coefficient matrix. Then, the constant false alarm rate (CFAR) detection is applied to extract the ranges between each target and the two radars, respectively, from the correlation matrix. Finally, the locations of human targets is calculated with the triangulation localization algorithm. This cross-correlation operation mainly brings about two advantages. On the one hand, the cross-correlation explores the correlation feature of target respiratory signals, which can effectively detect all targets with different signal intensities, avoiding the missed detection of weak targets. On the other hand, the pairing of two ranges between each target and two radars is implemented simultaneously with the cross-correlation. Experimental results verify the effectiveness of this algorithm.


2017 ◽  
Vol 362 (7) ◽  
Author(s):  
Songpeng Pei ◽  
Guoqiang Ding ◽  
Zhibing Li ◽  
Yajuan Lei ◽  
Rai Yuen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document