Energy Factor Analysis in Modular Product

2011 ◽  
Vol 130-134 ◽  
pp. 1314-1317
Author(s):  
Qing Di Ke ◽  
Hong Chao Zhang ◽  
Guang Fu Liu ◽  
Bing Bing Li

Nowadays, due to the huge energy consumption, the energy-saving problems of the product have been emphasized with many designers. In this paper, informed by the modular design method, the total energy performance in modular product can be analyzed and separated into the energy performances of basic modules. And with the physical analysis of basic modules, the energy equations are established with the band graphs theory. Then, the physical parameters, which could influence the energy consumption, are identified as “energy factor”. Thus, the energy consumption of the modules could be optimized with adjusting design factors, and the energy-saving design scheme for the whole product is obtained in the optimized model. Finally, the model and the method in this paper are demonstrated by an instance of the crank block pump.

2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


Author(s):  
Xiaoxia Lai ◽  
John K. Gershenson

Researchers have expanded the definition of product modularity from function-based modularity to life-cycle process-based modularity. In parallel, measures of product modularity have been developed as well as corresponding modular product design methods. However, a correct modularity measure and modular design method are not enough to realize modular product design. To apply the measure and design method correctly, product representation becomes an important aspect of modular design and imperative for realizing the promised cost savings of modularity. In this paper, a representation for retirement process-based modular design has been developed. Built upon previous representations for assembly and manufacturing-based product design, the representation includes a process similarity matrix and a process dependency matrix. The retirement process-based similarity is based on the similarity in components’ post-life intents (recycling, reuse, disposal), and either the degree of their material compatibility if the components will be recycled, or their disassembly direction or disassembly tools if they need to be disassembled from each other for retirement. Process similarity within a module leads to increased process efficiency (the elimination of non-value added tasks) from the sharing of tooling/equipment. Retirement process-based dependency is developed based on disassembly difficulty, one aspect of the physical interactions between components. Retiring components together as a module to eliminate disassembly and differential processing and reducing the disassembly difficulty between the modules can increase the efficiency of the retirement process. We have first presented which process elements we should consider for defining retirement process similarity and dependency, and then constructed the respective similarity and dependency factors tables. These tables include similarity and dependency factors, which, along with their quantifications, are used to determine a product’s modular architecture to facilitate the retirement process. Finally, a fishing reel is used to illustrate how to apply these factors tables to generate the similarity and dependency matrices that represent a product for retirement-process based modular design. Using these representations as input to the DSM-based modular design methods, we can achieve a design with a modular architecture that improves the retirement process efficiency and reduces retirement costs.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 9 ◽  
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Patrikas Bruzgevičius ◽  
Dorota Anna Krawczyk

In order to fulfil the European Energy Performance of Buildings Directive (EPBD) requirements regarding the reduction of energy consumption in buildings, much attention has been paid to primary energy consumption. Wind energy is one type of primary energy. The analysis of the literature has revealed that wind energy is evaluated by different methods. Therefore, the aim of this article was to calculate the effect of the parameters of wind sources on the primary energy factor of wind turbines. In order to achieve this aim, the primary energy factor of 100 investigated wind turbines and 11 wind farms operating in Lithuania was calculated. Investigation results showed that the difference of the non-renewable primary energy factor between wind turbines due to capacity is 35%. This paper provides a recommendation with regard to EU energy efficiency and renewable energy directives and regulations: All EU member states should use the same or very similar methodology for the calculation of the primary energy factor of renewable and non-renewable energy sources.


2021 ◽  
Vol 8 ◽  
Author(s):  
Catherine Baxevanou ◽  
Dimitrios Fidaros ◽  
Ilias Giannenas ◽  
Eleftherios Bonos ◽  
Ioannis Skoufos

Broiler facilities consume a lot of energy resulting in natural source depletion and greater greenhouse gas emissions. A way to assess the energy performance of a broiler facility is through an energy audit. In the present paper, an energy protocol for an energy audit is presented covering both phases of data collection and data elaboration. The operational rating phase is analytically and extendedly described while a complete mathematical model is proposed for the asset rating phase. The developed energy audit procedure was applied to poultry chambers located in lowland and mountainous areas of Epirus Greece for chambers of various sizes and technology levels. The energy intensity indices varied from 46 to 89 kWh/m2 of chamber area 0.25–0.48 kWh/kg of produced meat or 0.36–1.3 kWh/bird depending on the chamber technology level (insulation, automation, etc.) and the location where the unit was installed. The biggest energy consumer was heating followed by energy consumption for ventilation and cooling. An advanced technology level can improve energy performance by ~ 27%−31%. Proper insulation (4–7 cm) can offer a reduction of thermal energy consumption between 10 and 35%. In adequately insulated chambers, the basic heat losses are due to ventilation. Further energy savings can be achieved with more precise ventilation control. Automation can offer additional electrical energy saving for cooling and ventilation (15–20%). Energy-efficient lights can offer energy saving up to 5%. The use of photovoltaic (PV) technology is suggested mainly in areas where net-metering holds. The use of wind turbines is feasible only when adequate wind potential is available. Solar thermal energy is recommended in combination with a heat pump if the unit's heating and cooling systems use hot/cold water or air. Finally, the local production of biogas with anaerobic fermentation for producing thermal or electrical energy, or cogenerating both, is a choice that should be studied individually for each farm.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1695-1705
Author(s):  
Dimitrije Manic ◽  
Mirko Komatina ◽  
Biljana Vucicevic ◽  
Marina Jovanovic

Energy certification of buildings in Serbia was introduced in 2011 and energy label depends on energy need for heating per unit floor area of heated space, calculated by the fully prescribed monthly quasi-steady-state method defined by ISO 13790. In the Republic of Serbia, most of families live in single-family houses built before the energy certification of buildings was introduced. Therefore, the estimation of energy performance of the existing buildings is important for labeling, and evaluation of energy saving measures and energy strategies to be implemented. This paper examines the applicability of monthly method defined by National legislation on the existing buildings stock in Serbia, by comparing it to the more accurate dynamic simulation method. Typical single-family houses are taken as a test case, since they are responsible for about 76% of energy consumption for heating. The results show that the dynamic simulation method estimates 21% to 54% higher energy need for heating, compared to the monthly method. Also, the monthly method estimates up to 13% higher savings by typical building envelope energy saving measures, compared to the dynamic simulation. This paper recommends improvement in procedures for calculation of building energy performance index to better assess energy consumption, effects of energy saving measures, and create solid background for developing and implementing of energy saving strategies.


Author(s):  
Willem Hendrik Wehner ◽  
Nicolas Richter ◽  
Marc Schiemann ◽  
Pia-Maria Haselberger ◽  
Sebastian Ritz ◽  
...  

The paper provides considerations for a novel unmanned underwater vehicle class that offers new options to the offshore industries and marine science in matters of endurance, payload capacity, development time and economic viability. Today, different mission scenarios require different underwater vehicles. By applying modularization approach to the development of modular product classes, another way to design such vehicles is shown. Radical modularization of the vehicle enables collaborative as well as independent development of payload modules by industry or science. The design idea allows the combination of proven basic modules with novel mission modules. This allows assigning development activities of mission modules to diverse 3rd-party developers or customers. Topics covered in this paper are related to potential missions and the requirements they make on the vehicle. An evaluation of application scenarios considering the technical challenges vs. their economical relevance is made. The requirements for the MUM system are identified by analyzing the mission procedures regarding specific scenarios. The modular design method and challenges to validate feasibility of an extreme number of possible vehicle variants follow. Examples of variant drivers like diving depth or vehicle range as well as possible solutions will be discussed. The topics covered are the basis for further work within the three year research project MUM – Large Modifiable Underwater Mothership.


2014 ◽  
Vol 986-987 ◽  
pp. 1236-1239
Author(s):  
Yun Long Zhang

In energy-saving control process of large-scale-scale intelligent electromechanical device, it is need to consume non-essential energy. To reduce energy consumption, energy-saving design method is proposed based on adaptive linear genetic algorithms. According to theory of adaptive particle swarm optimization, optimal particle is searched in the global domain, which provides basis for energy-saving control of large-scale-scale intelligent electromechanical device. According to adaptive linear genetic theory, energy-saving control model of large-scale intelligent electromechanical device is built to complete energy-saving control. Experimental results show that algorithm can effectively reduce energy consumption and obtain satisfactory results.


2014 ◽  
Vol 602-605 ◽  
pp. 1190-1193
Author(s):  
Rui Xiang Fan ◽  
Wei Xia ◽  
Bin Liu

During the large transformers operation, the proportion of the non-essential energy consumption is higher. In order to reduce the energy consumption in power control process, a new design method of energy-saving control in large-scale power control process based on adaptive linear genetic algorithms. Loss model of power control is established firstly. Based on the relevant data of the model, energy-saving control in large-scale power control process can be achieved. Experimental results show that the improved algorithm can effectively reduce the energy consumption in large-scale power control system, and meet the actual demand of power control.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 563
Author(s):  
Samira Akbarova ◽  
. .

Energy consumption by construction sector is estimated by multi- disciplinary energy auditing and results are represented in an energy performance building certificate. The building certification, which is a world trend today, is applied successfully for many buildings  inAzerbaijantoo. The purpose of this paper to study the current methodology of energy building certification in terms of the technological aspects of energy auditing. Many documents of the European Union directives and Russian building codes and regulations in the field of ecology and energy saving in construction sector have been revised for implementing them as base for national energy performance certification system AZERI GREEN ZOOM. The assessment categories and main requirements have been considered. The results of this overview have shown the trends and problems in this field.  There are given examples of certified buildings.  


Sign in / Sign up

Export Citation Format

Share Document