Prospect of Particle Detection Technology Based on Digital Image Processing

2011 ◽  
Vol 143-144 ◽  
pp. 591-594 ◽  
Author(s):  
Zi Ye ◽  
Xiao Ping Jiang ◽  
Zhen Chong Wang ◽  
Wei Xiao

Digital image technology is the most effective and important way to communicate and acquire information. Image can be used as a mean or carrier of detecting and transmitting information. The accession of image processing technology solves many defects such as time-consuming, complex operation, low precision which existed in manual statistics and analysis on particles. The basic physical properties of particles include pore, shape, size and other parameters. Computer can be used for a variety of image processing, both to speed up the analysis processing and highlight the information people need at the present.

2014 ◽  
Vol 1044-1045 ◽  
pp. 1352-1356
Author(s):  
Shu Guang Wu ◽  
Shu He ◽  
Xia Yang

Image registration is one of the fundamental problems in digital image processing, which is a prerequisite and key step for further comprehensive analysis,considering the advantages of the algorithm in speed and its disadvantage of more false matching points,a image matching method based on RANSAC and surf isproposed.The experiments results show that compared with the other algorithms,the surf algorithm improves the matching speed,as well as the matching accuracy,and exhibits good performance in terms of resisting rotation,noise,and brightness changes.


2016 ◽  
Vol 41 (2) ◽  
pp. e12861 ◽  
Author(s):  
Arash Ghaitaranpour ◽  
Amir Rastegar ◽  
Farideh Tabatabaei Yazdi ◽  
Mohebbat Mohebbi ◽  
Behrooz Alizadeh Behbahani

Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


Sign in / Sign up

Export Citation Format

Share Document