Maintenance Strategies of Main Cable for Large Span Suspension Bridges Considering Different Scales

2011 ◽  
Vol 147 ◽  
pp. 153-156 ◽  
Author(s):  
Yong Zeng ◽  
Hong Mei Tan

Like all other civil engineering structures, suspension bridge is subjected to long-term formidable environment, such as fatigue and corrosion. After its open to traffic, degradation and damage of its components appear in suspension bridges, which cause the reduction of bearing capacity and reliability of suspension bridges. Therefore, the service safety of suspension bridges is a topic of importance, particularly for its managers. This paper provides maintenance strategies for managing and maintaining the structural safety of suspension bridge in a life cycle framework in order to rationalize maintenance actions, economically.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Pengfei Cao ◽  
Hai Fang ◽  
Weiqing Liu ◽  
Yong Zhuang ◽  
Yuan Fang ◽  
...  

A composite wrapping system for main cable protection of suspension bridges was designed by using prepreg fiber-reinforced composites and nitrile rubber. The circumferential expansion performance of the system was tested, and the curves of circumferential bearing capacity and radial displacement of the components were obtained. Failure modes of each group of components were compared and analyzed. The results show that most of the components are vertically fractured at the lap transition. The increase of the number of prepreg layers contributed the most to the circumferential bearing capacity of components, with a growth rate of 65.31%~109.01%. The increase of rubber belt layers had the most significant effect on the radial displacement of the components, with a growth rate of 7.06%~23.5%. In the initial stage of the test, the strain of each part of the component was smaller due to the compaction by the loading device, and the strain value of the component was generally linearly increased during the loading process, during which the strain of the overlap was the smallest. The calculated cross-sectional temperature deformation of the main cable is in good agreement with the experimental data. The application of the rubber belt increases the deformation of the main cable; therefore, the protection system for the main cable could have more deformation redundancy and delay the arrival of the ultimate strain of the outer prepreg wrap.


2021 ◽  
Vol 11 (13) ◽  
pp. 5920
Author(s):  
Dagang Wang ◽  
Jihong Ye ◽  
Bo Wang ◽  
Magd Abdel Wahab

The long-span multi-tower suspension bridge is widely used in the construction of river and sea crossing bridges. The load-bearing safety and anti-sliding safety of its main cable are directly related to the structural safety of a suspension bridge. Failure mechanisms of the main cable of a long-span multi-tower suspension bridge are discussed. Meanwhile, the tribo-corrosion-fatigue of main cable, contact, and slip behaviors of the saddle and service safety assessment of the main cable are reviewed. Finally, research trends in service safety assessment of main cable are proposed. It is of great significance to improve the service safety of the main cable and thereby to ensure the structural safety of long-span multi-tower suspension bridges.


2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


2012 ◽  
Vol 461 ◽  
pp. 151-154
Author(s):  
Dai Yong Jia ◽  
Lu Yan Sui ◽  
Ming Lai He

In this study, an experiment platform was built up to determine the key parameter, mass transfer coefficient, of the ventilation and dehumidification process in main cable of suspension bridge. On the basis of experimental studies, an empirical formula of the mass transfer coefficient was obtained, which can greatly contribute to control the content of moisture in the main cable of suspension bridges.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Myung-Rag Jung ◽  
Dong-Ju Min ◽  
Moon-Young Kim

A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM) is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.


2014 ◽  
Vol 543-547 ◽  
pp. 3977-3981
Author(s):  
Jian Yuan Sun ◽  
Cheng Zhang Yin ◽  
Zeng Bao Ma

With the increase of the span of suspension bridge, the weight of the main cable increases, and the safety margin becomes smaller. Thus high accuracy is necessary for the construction control analysis of suspension bridges. The traditional finite element software cannot meet the accuracy requirement because of temperature, cable saddle and other factors, which influence the construction control. Based on the modified segmental catenary method, this paper has come up with a fine analysis method for the construction control of suspension bridges. And a software program called ZambisSC has been developed using object-oriented programming language combined with a number of the latest software development technologies. Compared with the monitoring results of Nancha suspension bridge in Guangzhou, China, it shows that ZambisSC can predict the main cable shape with high accuracy.


2012 ◽  
Vol 22 (09) ◽  
pp. 1250021 ◽  
Author(s):  
IVANA BOCHICCHIO ◽  
CLAUDIO GIORGI ◽  
ELENA VUK

In this paper we study the long-term dynamics of a nonlinear suspension bridge system. The road bed and the main cable are modeled as a nonlinear beam and a vibrating string, respectively, and their coupling is carried out by one-sided springs. First, we scrutinize the set of stationary solutions, which turns out to be nontrivial when the axial load exceeds some critical value. Then, we prove the existence of a bounded global attractor of optimal regularity and we give its characterization in terms of the steady states of the problem.


2019 ◽  
Vol 23 (7) ◽  
pp. 1423-1437
Author(s):  
Wen-ming Zhang ◽  
Gen-min Tian ◽  
Hai-xia Zhao ◽  
Zhi-wei Wang ◽  
Zhao Liu

The accurate measurement of the hanger tensile forces of suspension bridges is crucial for construction control and bridge maintenance. However, the commonly used vibration frequency method is not applicable to the short-hanger force assessment. The configuration of the main cable of a suspension bridge is closely related to hanger forces so that the main cable configuration can reflect the hanger forces. Based on the multi-segment catenary theory, this study proposed an analytical algorithm for the reverse assessment of hanger forces based on the measured configuration data of the main cable. First, the relationship between the hanger force and two critical parameters, that is, the horizontal force of the main cable and the catenary parameter, is established, in which the influence of the saddle arc on the main cable configuration is considered. Then, the horizontal force of the main cable is used as the breakthrough point, and a geometric condition (measuring the coordinates of a non-hanging point on the main cable) or a mechanical condition (measuring the tension of a long hanger by the vibration frequency method) is added. Using the nonlinear generalized reduced gradient method, the nonlinear equations are solved, and all hanger forces are identified. The proposed method feasibility and effectiveness are proved using a suspension bridge with a main span of 730 m as an example. The results show that the algorithm of adding a mechanical condition is lower in sensitivity, less affected by the accuracy of the additional condition, higher in precision, and easier to control, comparing to that of adding a geometric condition. Meanwhile, the horizontal force of the main cable and each hanger force exhibit a nearly perfect linear correlation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Wang Hui-Li ◽  
Tan Yan-Bin ◽  
Qin Si-Feng ◽  
Zhang Zhe

Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.


Sign in / Sign up

Export Citation Format

Share Document