scholarly journals Review on the Service Safety Assessment of Main Cable of Long Span Multi-Tower Suspension Bridge

2021 ◽  
Vol 11 (13) ◽  
pp. 5920
Author(s):  
Dagang Wang ◽  
Jihong Ye ◽  
Bo Wang ◽  
Magd Abdel Wahab

The long-span multi-tower suspension bridge is widely used in the construction of river and sea crossing bridges. The load-bearing safety and anti-sliding safety of its main cable are directly related to the structural safety of a suspension bridge. Failure mechanisms of the main cable of a long-span multi-tower suspension bridge are discussed. Meanwhile, the tribo-corrosion-fatigue of main cable, contact, and slip behaviors of the saddle and service safety assessment of the main cable are reviewed. Finally, research trends in service safety assessment of main cable are proposed. It is of great significance to improve the service safety of the main cable and thereby to ensure the structural safety of long-span multi-tower suspension bridges.

2010 ◽  
Vol 163-167 ◽  
pp. 3223-3229 ◽  
Author(s):  
Jun Hu ◽  
Jin Ping Ou

The cable is the main load-bearing component of suspension bridge and its safety assessment under extreme wind load is a key issue to the structure. Take a long-span suspension bridge in the East Sea China as an example, the standard of extreme wind load for structural safety evaluation is established; the wire’s strength model is established by the type I extreme value distribution; cable’s safety assessment function under wind load is established and the Monte Carlo method is used to get the cable’s reliability and reliable indicators. The bridge’s re-service term is taken for 90 years as an example, the results indicate that the wire’s serial effects can’t be ignored, the cable’s reliable indicator decreases as the number of broken wires increases in approximately the linear attenuation relations, the critical percentage of broken wires is about 10%.


2011 ◽  
Vol 147 ◽  
pp. 153-156 ◽  
Author(s):  
Yong Zeng ◽  
Hong Mei Tan

Like all other civil engineering structures, suspension bridge is subjected to long-term formidable environment, such as fatigue and corrosion. After its open to traffic, degradation and damage of its components appear in suspension bridges, which cause the reduction of bearing capacity and reliability of suspension bridges. Therefore, the service safety of suspension bridges is a topic of importance, particularly for its managers. This paper provides maintenance strategies for managing and maintaining the structural safety of suspension bridge in a life cycle framework in order to rationalize maintenance actions, economically.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Tian ◽  
Jiji Wang ◽  
Sugong Cao ◽  
Yuanli Chen ◽  
Luwei Li

This paper presents a reliability analysis to assess the safety of corroded main cables of a long-span suspension bridge. A multiscale probability model was established for the resistance of the main cables considering the length effect and the Daniels effect. Corrosion effects were considered in the wire scale by relating the test results from accelerated corrosion tests to the corrosion stages and in the cable scale by adopting a corrosion stage distribution of the main cable section in NCHRP Report 534. The load effects of temperature, wind load, and traffic load were obtained by solving a finite element model with inputs from in-service monitoring data. The so-obtained reliability index of the main cables reduces significantly after operation for over 50 years and falls below the design target value due to corrosion effects on the mechanical properties of the steel wire. Multiple measures should be taken to delay the corrosion effects and ensure the safety of the main cables in the design service life.


2012 ◽  
Vol 461 ◽  
pp. 151-154
Author(s):  
Dai Yong Jia ◽  
Lu Yan Sui ◽  
Ming Lai He

In this study, an experiment platform was built up to determine the key parameter, mass transfer coefficient, of the ventilation and dehumidification process in main cable of suspension bridge. On the basis of experimental studies, an empirical formula of the mass transfer coefficient was obtained, which can greatly contribute to control the content of moisture in the main cable of suspension bridges.


2020 ◽  
Vol 10 (21) ◽  
pp. 7666
Author(s):  
Ngoc-Son Dang ◽  
Gi-Tae Rho ◽  
Chang-Su Shim

Long-span suspension bridges require accumulated design and construction technologies owing to challenging environmental conditions and complex engineering practices. Building information modeling (BIM) is a technique used to federate essential data on engineering knowledge regarding cable-supported bridges. In this study, a BIM-based master digital model that uses a data-driven design for multiple purposes is proposed. Information requirements and common data environments are defined considering international BIM standards. A digital inventory for a suspension bridge is created using individual algorithm-based models, and an alignment-based algorithm is used to systematize them and generate the entire bridge system. After assembling the geometrical model, metadata and various BIM applications are linked to create the federated master model, from which the mechanical model is derived for further stages. During the construction stage, the advantage of this digital model lies in its capability to perform efficient revisions and updates with respect to varying situations during the erection process. Stability analyses of the bridge system can be performed continuously at each erection step while considering the geometric control simulation. Furthermore, finite element analysis models for any individual structural member can be extracted from the master digital model, which is aimed at estimating the actual behavior of bridge members. In addition, a pilot master digital model was generated and applied to an existing suspension bridge; this model exhibited significant potential in terms of bridge data generation and manipulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Pengfei Cao ◽  
Hai Fang ◽  
Weiqing Liu ◽  
Yong Zhuang ◽  
Yuan Fang ◽  
...  

A composite wrapping system for main cable protection of suspension bridges was designed by using prepreg fiber-reinforced composites and nitrile rubber. The circumferential expansion performance of the system was tested, and the curves of circumferential bearing capacity and radial displacement of the components were obtained. Failure modes of each group of components were compared and analyzed. The results show that most of the components are vertically fractured at the lap transition. The increase of the number of prepreg layers contributed the most to the circumferential bearing capacity of components, with a growth rate of 65.31%~109.01%. The increase of rubber belt layers had the most significant effect on the radial displacement of the components, with a growth rate of 7.06%~23.5%. In the initial stage of the test, the strain of each part of the component was smaller due to the compaction by the loading device, and the strain value of the component was generally linearly increased during the loading process, during which the strain of the overlap was the smallest. The calculated cross-sectional temperature deformation of the main cable is in good agreement with the experimental data. The application of the rubber belt increases the deformation of the main cable; therefore, the protection system for the main cable could have more deformation redundancy and delay the arrival of the ultimate strain of the outer prepreg wrap.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Myung-Rag Jung ◽  
Dong-Ju Min ◽  
Moon-Young Kim

A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM) is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840009 ◽  
Author(s):  
Hao Wang ◽  
Yifeng Wu ◽  
Ben Sha ◽  
Wenzhi Zheng ◽  
Yuqi Gao

In the design of super-long-span suspension bridges, the floating system is commonly adopted. However, this system may lead to the excessive earthquake-excited longitudinal displacement (LD) at the end of the main girder, which in return could result in pounding damage at expansion joints. In this paper, Taizhou Bridge, the triple-tower suspension bridge with the longest main span in the world, is taken as an example to demonstrate the effectiveness of three different approaches (elastic links, viscous dampers, and their combination) of mitigating the possible excessive LD. The finite element code ABAQUS is used to build the numerical model of the bridge and calculate the dynamic characteristics as well as the seismic responses. Then, 24 cases with different parameters of elastic links and viscous dampers are investigated and it is observed that the mitigation effect of the 24 cases varies significantly with different parameters. To obtain the optimized mitigation effect for seismic responses, including the LD of the girder, the LD and shear force of all towers, in the 24 cases, the modified analytic hierarchy process (AHP) method is introduced to realize the compositive optimal control of the triple-tower suspension bridge. Results show that the 24th case is the optimal one in which the LD of the girder is reduced significantly while the inner force of towers does not get excessive increase.


Sign in / Sign up

Export Citation Format

Share Document