A Self-Learning Algorithm Based on Support Vector Machine for Scheduling a Job-Shop-Like Knowledgeable Manufacturing Cell

2011 ◽  
Vol 148-149 ◽  
pp. 369-373
Author(s):  
Wen Chao Li ◽  
Hong Sen Yan

The job-shop-like knowledgeable manufacturing cell scheduling is a NP-complete problem and there has not been a completely valid algorithm for it until now. An algorithm with self -learning ability is proposed through the addition of precedence constraint of operations on the basis of directed graph. A method based on support vector machine is constructed to choose accurately interchangeable operations by small samples earning to obtain the better scheduling. The classification accuracy can be improved by the continuous addition of new instances to the sample library. The results of simulation show that the algorithm performs well for the job-shop-like knowledgeable manufacturing cell.

2011 ◽  
Vol 216 ◽  
pp. 301-306
Author(s):  
Shi Hua Zhang ◽  
Xi Long Qu ◽  
Xue Ye Wang

There is no incremental learning ability for the traditional support vector machine (SVM) and there are all kind of merits and flaws for usually used incremental learning method. Normal SVM is unable to train in large-scale samples, while the computer’s memory is limited. In order to resolve this problem and improve training speed of the SVM, we analyze essential characteristic of SVM and bring up the incremental learning algorithm of SVM based on regression of SVM related to SV (support vectors). The algorithm increases the speed of training and can be able to learning with large-scale samples while its regressive precision loses fewer. The experiments show that SVM performs effectively and practically. Its application to prediction of the transition temperature (Tg) for high molecular polymers show that this model (R2=0.9427) proved to be considerably more accurate compared to a ANNs regression model (R2=0.9269).


2012 ◽  
Vol 461 ◽  
pp. 818-821
Author(s):  
Shi Hu Zhang

The problem of real estate prices are the current focus of the community's concern. Support Vector Machine is a new machine learning algorithm, as its excellent performance of the study, and in small samples to identify many ways, and so has its unique advantages, is now used in many areas. Determination of real estate price is a complicated problem due to its non-linearity and the small quantity of training data. In this study, support vector machine (SVM) is proposed to forecast the price of real estate price in China. The experimental results indicate that the SVM method can achieve greater accuracy than grey model, artificial neural network under the circumstance of small training data. It was also found that the predictive ability of the SVM outperformed those of some traditional pattern recognition methods for the data set used here.


Author(s):  
Hong-Sen Yan ◽  
Wen-Chao Li

As a component of knowledgeable manufacturing systems, the structure of flow shop–like knowledgeable manufacturing cells is similar to that of a flow shop, thus representing an NP-hard issue. Here, we propose a self-evolutionary algorithm that exhibits learning ability and is composed of learning and scheduling modules. Unlike traditional scheduling algorithms, whose performances remain unchanged when the procedure is coded, the performance of the algorithm proposed in this study gradually improves as the learning process continues. The self-evolutionary ability is realized through the training of a hybrid kernel support vector machine. The hybrid kernel support vector machine was designed to approximate the value of the Q-function to select the appropriate action for the scheduling module and thus to obtain the optimal solution. An iterative process of value based on the Q-learning was adopted to train the hybrid kernel support vector machine to gradually enhance the algorithm’s efficiency and accuracy. The extracted state features of the flow shop–like knowledgeable manufacturing cells serve as inputs to hybrid kernel support vector machine for easy generalization of the learning results. The action exerted on a feasible solution is also defined as the input of the hybrid kernel support vector machine. The computational results show that the performance of the proposed procedure improves as the learning process progresses. Data from the computation and comparisons with other algorithms verify the validity and efficiency of the proposed algorithm.


2014 ◽  
Vol 614 ◽  
pp. 397-400 ◽  
Author(s):  
Qiong Guan ◽  
Han Qing Tao ◽  
Bin Huang

The railway switch failure prediction for railway signal equipment maintenance plays an important role. The paper put forward railway switch failure prediction algorithm based on least squares support vector machine, and chose five characteristic indexes composed of railway switch failure prediction models characteristic input vectors. It reduces the dimension of input vectors, shorten the least squares support vector machine training time, and use a pruning algorithm to accelerate the computing speed maintaining a good regression performance at the same time. The experiment proved that railway switch failure prediction algorithm has strong self-learning ability and higher prediction accuracy based on least squares support vector machine. And it can accelerate the speed of switch failure prediction and improve the accuracy and reliability of railway switch failure prediction.


2018 ◽  
Vol 228 ◽  
pp. 02011
Author(s):  
Hui Song

The automatic control of naval vessels is based on the navigational plan, and the navigational safety depends on the scientific nature of the plan, so the risk assessment of the navigational plan is very important. At present, the commonly used evaluation methods are too subjective. In this paper, an evaluation model based on support vector machine is proposed, and the empirical study is carried out with historical data. The results show that the evaluation model based on support vector machine has good self-learning ability and feature extraction ability, which can provide reference for the risk assessment of naval vessels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florent Le Borgne ◽  
Arthur Chatton ◽  
Maxime Léger ◽  
Rémi Lenain ◽  
Yohann Foucher

AbstractIn clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecification. In this paper, we aimed to propose an approach that combines machine learning and G-computation when both the outcome and the exposure status are binary and is able to deal with small samples. We evaluated the performances of several methods, including penalized logistic regressions, a neural network, a support vector machine, boosted classification and regression trees, and a super learner through simulations. We proposed six different scenarios characterised by various sample sizes, numbers of covariates and relationships between covariates, exposure statuses, and outcomes. We have also illustrated the application of these methods, in which they were used to estimate the efficacy of barbiturates prescribed during the first 24 h of an episode of intracranial hypertension. In the context of GC, for estimating the individual outcome probabilities in two counterfactual worlds, we reported that the super learner tended to outperform the other approaches in terms of both bias and variance, especially for small sample sizes. The support vector machine performed well, but its mean bias was slightly higher than that of the super learner. In the investigated scenarios, G-computation associated with the super learner was a performant method for drawing causal inferences, even from small sample sizes.


Transport ◽  
2011 ◽  
Vol 26 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Yanrong Hu ◽  
Chong Wu ◽  
Hongjiu Liu

A support vector machine is a machine learning method based on the statistical learning theory and structural risk minimization. The support vector machine is a much better method than ever, because it may solve some actual problems in small samples, high dimension, nonlinear and local minima etc. The article utilizes the theory and method of support vector machine (SVM) regression and establishes the regressive model based on the least square support vector machine (LS-SVM). Through predicting passenger flow on Hangzhou highway in 2000–2008, the paper shows that the regressive model of LS-SVM has much higher accuracy and reliability of prediction, and therefore may effectively predict passenger flow on the highway. Santrauka Atraminių vektorių metodas (Support Vector Machine – SVM) yra skaičiuojamasis metodas, paremtas statistikos teorija, struktūriniu požiūriu mažinant riziką. SVM metodas, palyginti su kitais metodais, yra patikimesnis metodas, nes juo remiantis galima išspręsti realias problemas, esant įvairioms sąlygoms. Tyrimams naudojama SVM metodo regresijos teorija ir sukuriamas regresinis modelis, kuris grindžiamas mažiausių kvadratų atraminių vektorių metodu (Least Squares Support Vector Machine – LS-SVM). Straipsnio autoriai prognozuoja keleivių srautą Hangdžou (Kinija) greitkelyje 2000–2008 m. Gauti rezultatai rodo, kad regresinis LS-SVM modelis yra labai tikslus ir patikimas, todėl gali būti efektyviai taikomas keleivių srautams prognozuoti greitkeliuose. Резюме Метод опорных векторов (Support Vector Machine – SVM) – это набор аналогичных алгоритмов вида «обучение с учителем», использующихся для задач классификации и регрессионного анализа. Метод SVM принадлежит к семейству линейных классификаторов. Основная идея метода SVM заключается в переводе исходных векторов в пространство более высокой размерности и поиске разделяющей гиперплоскости с максимальным зазором в этом пространстве. Алгоритм работает в предположении, что чем больше разница или расстояние между параллельными гиперплоскостями, тем меньше будет средняя ошибка классификатора. В сравнении с другими методами метод SVM более надежен и позволяет решать проблемы с различными условиями. Для исследования был использован метод SVM и регрессионный анализ, затем создана регрессионная модель, основанная на методе опорных векторов с квадратичной функцией потерь (Least Squares Support Vector Machine – LS-SVM). Авторы прогнозировали пассажирский поток на автомагистрали Ханчжоу (Китай) в 2000–2008 гг. Полученные результаты показывают, что регрессионная модель LS-SVM является надежной и может быть применена для прогнозирования пассажирских потоков на других магистралях.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Akash Saxena ◽  
Shalini Shekhawat

With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air.


Sign in / Sign up

Export Citation Format

Share Document