Analysis of Stagnant Non Condensable Gases Effects on Condensation Heat Transfer in a Vertical Tube

2011 ◽  
Vol 148-149 ◽  
pp. 491-495
Author(s):  
Jun Xia Zhang ◽  
Zeng Sheng Li ◽  
Bin Yao Gong ◽  
Hong Xing Zhao ◽  
Yu Huai Zhao

In a vertical condenser tube installed at the cold end of a non-vacuum separate type heat pipe, non condensable (NC) gases in the system is pushed by continuous vapor flowing from the hot end into the condenser tube at the cold end, gathering above condensate at the outlet of the condenser tube. Therefore, condensation heat transfer of vapor with the stagnant NC gases occurs in the condenser tube. It is necessary to comprehend the effects of stagnant NC gases on condensation heat transfer. A VOF method was adopted to analyze how stagnant NC gases affect condensation heat transfer, a mass fraction equation of NC gases was used to solve diffusion between NC gases and vapor, a Hertz-Knudsen-Schrage model was applied to deal with condensation rate of vapor on the surface of liquid film. Parameters, including volume fraction, velocity, pressure, mass fraction of NC gases and condensation heat transfer coefficients (HTC), were obtained. Results show that a lot of NC gases deposits in the condenser tube rear, leading a lot of vapor to condense at the condenser tube front. NC gases slightly affect condensation HTC of the tube front, and severely degrade condensation HTC of the tube rear. Furthermore, an increase in mass of NC gases causes a rise in pressure and velocity, improving condensation heat transfer.

2013 ◽  
Vol 753-755 ◽  
pp. 2717-2721
Author(s):  
Jun Xia Zhang ◽  
Li Wang ◽  
Jian Wen Wang

The greater part of the horizontal condenser tube is occupied by the stratified and annular flows, which play important roles in condensation heat transfer coefficients. Both a volume of fluid (VOF) interface tracking method and k-ε two equations model was applied to analyze the characteristics of the stratified and annular flows for horizontal tubes, obtaining distribution of velocity, contours of both temperature and local condensation heat transfer coefficients. The computation shows that an annular flow having thinner liquid film attached on the inner surface of tubes appears at the inlet of the horizontal condenser tube because vapor exerts a higher interfacial shear stress on the gas-liquid interface, therefore, there are a higher local condensation heat transfer coefficients there. Next, as vapor quality decreases and condensate gravity increases along the condenser tube length, the condensation flow pattern transforms from the annular flow into the stratified flow in which local condensation heat transfer coefficients decreases and distributes unevenly along the circumference as liquid film at the bottom of the condenser tube become thicker. In addition, in the stratified flow, a wave structure is formed in the middle of the condensate pool at the bottom of the condenser tube because condensate on the top of the condenser tube slides into the bottom of the condenser tube and collapse each other. The heat transfer rate calculated by the present method is compared to those predicted from a Shah correlation, the agreement is found to be good, and both errors is within 7%.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Cong Qi ◽  
Yongliang Wan ◽  
Lin Liang ◽  
Zhonghao Rao ◽  
Yimin Li

Considering mass transfer and energy transfer between liquid phase and vapor phase, a mixture model for boiling heat transfer of nanofluid is established. In addition, an experimental installation of boiling heat transfer is built. The boiling heat transfer of TiO2–water nanofluid is investigated by numerical and experimental methods, respectively. Thermal conductivity, viscosity, and boiling bubble size of TiO2–water nanofluid are experimentally investigated, and the effects of different nanoparticle mass fractions, bubble sizes and superheat on boiling heat transfer are also discussed. It is found that the boiling bubble size in TiO2–water nanofluid is only one-third of that in de-ionized water. It is also found that there is a critical nanoparticle mass fraction (wt.% = 2%) between enhancement and degradation for TiO2–water nanofluid. Compared with water, nanofluid enhances the boiling heat transfer coefficient by 77.7% when the nanoparticle mass fraction is lower than 2%, while it reduces the boiling heat transfer by 30.3% when the nanoparticle mass fraction is higher than 2%. The boiling heat transfer coefficients increase with the superheat for water and nanofluid. A mathematic correlation between heat flux and superheat is obtained in this paper.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


Author(s):  
Richard A. Riemke ◽  
Cliff B. Davis ◽  
Richard R. Schultz

The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.


Author(s):  
Sunil Mehendale

In HVACR equipment, internally enhanced round tube (microfin) designs such as axial, cross-grooved, helical, and herringbone are commonly used to enhance the boiling and condensing performance of evaporators, condensers, and heat pumps. Typically, such tubes are mechanically expanded by a mandrel into a fin pack to create an interference fit between the tube outside surface and the fin collar to minimize the thermal contact resistance between tube and fin. However, during this expansion process, the internal enhancements undergo varying amounts of deformation, which degrades the in-tube thermal performance. Extensive data on condensing heat transfer coefficients in microfin tubes have been reported in the open literature. However, researchers have seldom used expanded tubes to acquire and report such data. Hence, it is always questionable to use such pristine tube data for designing heat exchangers and HVACR systems. Furthermore, the HVACR industry has been experiencing steeply rising copper costs, and this trend is expected to continue in coming years. So, many equipment manufacturers and suppliers are actively converting tubes from copper to aluminum. However, because of appreciable differences between the material properties of aluminum and copper, as well as other manufacturing variables, such as mandrel dimensions, lubricant used, etc., tube expansion typically deforms aluminum fins more than copper fins. Based on an analysis of the surface area changes arising from tube expansion, and an assessment of the best extant in-tube condensation heat transfer correlations, this work proposes a method of estimating the impact of tube expansion on in-tube condensation heat transfer. The analysis leads to certain interesting and useful findings correlating fin geometry and in-tube condensation thermal resistance. This method can then be applied to more realistically design HVACR heat exchangers and systems.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Yanfei Liu ◽  
Xiaotian Han ◽  
Chaoqun Shen ◽  
Feng Yao ◽  
Mengchen Zhang

A vapor chamber can meet the cooling requirements of high heat flux electronic equipment. In this paper, based on a proposed vapor chamber with a side window, a vapor chamber experimental system was designed to visually study its evaporation and condensation heat transfer performance. Using infrared thermal imaging technology, the temperature distribution and the vapor–liquid two-phase interface evolution inside the cavity were experimentally observed. Furthermore, the evaporation and condensation heat transfer coefficients were obtained according to the measured temperature of the liquid near the evaporator surface and the vapor near the condenser surface. The effects of heat load and filling rate on the thermal resistance and the evaporation and condensation heat transfer coefficients are analyzed and discussed. The results indicate that the liquid filling rate that maximized the evaporation heat transfer coefficient was different from the liquid filling rate that maximized the condensation heat transfer coefficient. The vapor chamber showed good heat transfer performance with a liquid filling rate of 33%. According to the infrared thermal images, it was observed that the evaporation/boiling heat transfer could be strengthened by the interference of easily broken bubbles and boiling liquid. When the heat input increased, the uniformity of temperature distribution was improved due to the intensified heat transfer on the evaporator surface.


2010 ◽  
Vol 18 (02) ◽  
pp. 85-100 ◽  
Author(s):  
C. Y. PARK ◽  
P. S. HRNJAK

This paper presents a review of differences and similarities of in-tube heat transfer and pressure drop between ammonia (NH3) and carbon dioxide (CO2) from the perspective of the design of heat exchangers for NH3 two-stage and CO2/NH3 cascade refrigeration systems. The focus is on differences in thermophysical properties and thus different characteristics of heat transfer and pressure drop. A brief summary of published literatures about CO2/NH3 cascade refrigeration systems is provided and literature review of available correlations and developed correlations are presented for flow boiling and condensation heat transfer and pressure drop. Because of large deviation of calculated values with exiting correlations from measured results, a new correlation to predict flow condensation heat transfer coefficients was developed based on experimental results for CO2 at -15°C. From comparison of measured and predicted values, it is shown that some correlations, previously published in open literature, can be used to calculate flow boiling heat transfer coefficients for NH3 at -20°C, if a flow pattern can be appropriately determined for a flow condition. Also, it is presented that existing correlations can predict well the heat transfer coefficients for CO2 flow boiling at -15 and -30°C. It is shown that some correlations can predict pressure drop relatively well for NH3 and CO2 two-phase flow. The NH3 and CO2 flow evaporation heat transfer and pressure drop characteristics at -40°C are compared with predicted values.


2008 ◽  
Vol 07 (06) ◽  
pp. 325-331 ◽  
Author(s):  
S. M. SOHEL MURSHED ◽  
KAI CHOONG LEONG ◽  
CHUN YANG ◽  
NAM-TRUNG NGUYEN

This paper reports an experimental investigation into force convective heat transfer of nanofluids flowing through a cylindrical minichannel under laminar flow and constant wall heat flux conditions. Sample nanofluids were prepared by dispersing different volumetric concentrations (0.2–0.8%) of nanoparticles in deionized water. The results showed that both the convective heat transfer coefficient and the Nusselt number of the nanofluid increase considerably with the nanoparticle volume fraction as well as the Reynolds number. Along with the enhanced thermal conductivity of nanofluids, the migration, interactions, and Brownian motion of nanoparticles and the resulting disturbance of the boundary layer are responsible for the observed enhancement of heat transfer coefficients of nanofluids.


Sign in / Sign up

Export Citation Format

Share Document