Maximizing the Lifetime of Sliding Wireless Sensors in Barrier Coverage

2012 ◽  
Vol 157-158 ◽  
pp. 503-506 ◽  
Author(s):  
Tao Yang ◽  
Pan Guo Fan ◽  
De Jun Mu

Wireless sensor network is always deployed in specific area for intrusion detection and environmental monitoring. The sensor nodes suffer mostly from their limited battery capacity.Maximizing the lifetime of the entire networks is mainly necessary considered in the design. Sliding the sensors in different barriers under the optimal barrier construction is a good solution for both maximizing network lifetime and providing predetermined coverage ratio. The simulation results demonstrate that the scheme can effectively reduce the energy consumption of the wireless sensor network and increase the network lifetime.

2011 ◽  
Vol 20 (06) ◽  
pp. 1051-1066 ◽  
Author(s):  
LINFENG LIU

Underwater sensor networks will find many oceanic applications in near future, and the deployment problem in 3D sensor networks has not been paid enough attention at present. In order to maximize the network lifetime, a deployment algorithm (UDA) for underwater sensor networks in ocean environment is proposed. UDA can determine and select the best cluster shape, then partition the space into layers and clusters while maintaining full coverage and full connectivity. In addition, nodes closer to sinks are possible to bear a heavier data-relaying mission. UDA sets different node deployment densities at different layers in response to the potential relay discrepancy. The simulation results suggest UDA can choose the proper cluster shape to get the maximum underwater wireless sensor network lifetime approximately.


2021 ◽  
Author(s):  
Mandana Jafarian

Emergency situations in mines result in loss of precious human lives. In this thesis we discussed architecture of a Wireless Sensor Network (WSN) that can be deployed in mines, which takes care of severe geographical and environmental constraints found inside mines. The proposed architecture is a two-level hierarchy of small sized WSNs that employs a wireless Mesh network as the backbone connecting small sized WSNs scattered inside mines. We proposed a routing protocol for that WSN that is optimized for both emergency and non-emergency data routing. Since our main goal is to provide safety in the mining environment, the main consideration of the routing protocol is to provide reliability and reduce the end-to-end delay for vital emergency traffic while optimizing for network longevity for non-emergency traffic. We present a new cost-based routing protocol called MDML, which provides Minimum Delay and Maximum Lifetime routing for such networks. The proposed MDML routing defines separate cost metrics for emergency and non-emergency traffic. It finds the least-cost path for the reliable delay-constrained emergency traffic with regards to link error rate but also gives secondary consideration to nodes' residual energy. It is an energy efficient routing scheme for non-emergency or regular data traffic routing that maximizes the network lifetime. However, for emergency traffic energy efficiency is compromised to achieving minimal delay. Regular traffic is generated through periodic monitoring and is delay-insensitive. For regular traffic delivery, a shortest path routinig algorithm is employed which uses link costs that reflect both the communication energy consumption rates and the residual energy levels at the two end nodes. Simulation results show that using the proposed emergency routes reduces the end-to-end delay for emergency traffic. The effect of protocol update cycle on increasing the network lifetime is verified true simulation. MDML is also compared with a simulated non-MDML approach to compare the lifetime and delay performance. Simulation results have demonstrated the effectiveness of our approach.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


Author(s):  
Wan Isni Sofiah Wan Din ◽  
Asyran Zarizi Bin Abdullah ◽  
Razulaimi Razali ◽  
Ahmad Firdaus ◽  
Salwana Mohamad ◽  
...  

<span lang="EN-US">Wireless Sensor Network (WSN) is a distributed wireless connection that consists many wireless sensor devices. It is used to get information from the surrounding activities or the environment and send the details to the user for future work. Due to its advantages, WSN has been widely used to help people to collect, monitor and analyse data. However, the biggest limitation of WSN is about the network lifetime. Usually WSN has a small energy capacity for operation, and after the energy was used up below the threshold value, it will then be declared as a dead node. When this happens, the sensor node cannot receive and send the data until the energy is renewed. To reduce WSN energy consumption, the process of selecting a path to the destination is very important. Currently, the data transmission from sensor nodes to the cluster head uses a single hop which consumes more energy; thus, in this paper the enhancement of previous algorithm, which is MAP, the data transmission will use several paths to reach the cluster head. The best path uses a small amount of energy and will take a short time for packet delivery. The element of Shortest Path First (SPF) Algorithm that is used in a routing protocol will be implemented. It will determine the path based on a cost, in which the decision will be made depending on the lowest cost between several connected paths. By using the MATLAB simulation tool, the performance of SPF algorithm and conventional method will be evaluated. The expected result of SPF implementation will increase the energy consumption in order to prolong the network lifetime for WSN.</span>


2017 ◽  
Vol 6 (3) ◽  
pp. 306-309 ◽  
Author(s):  
Huseyin Ugur Yildiz ◽  
Bulent Tavli ◽  
Behnam Ojaghi Kahjogh ◽  
Erdogan Dogdu

Author(s):  
Vinay Chowdary ◽  
Mukul Kumar Gupta ◽  
Sushabhan Choudhury

The maximizing lifetime of Barrier coverage in wireless sensor network has attracted researchers in recent past. In barrier coverage applications it is essential to prolong the lifetime of sensor networks which guarantees extended operating lifetime of the overall network. In this paper, we propose a novel Tell Neighbor Algorithm (TNA), which increases the operating lifetime of the overall network. Simulation results show that the lifetime obtained by TNA is better than some of the already existing state-of-art algorithms. Lifetime obtained by TNA is doubled when compared already existing algorithms.


Author(s):  
Swedika Sharma

Wireless sensor network is the combination of sensor nodes where sensor nodes are distributed all over the network. There are some challenges that come into the wireless sensor network n context to energy efficiency, network lifetime, storage and battery backup. The most important feature of a routing protocol, in order to be efficient for WSNs, is the energy consumption and the extension of the network’s lifetime. In this paper, we have analyzed various routing techniques for WSN that increases the network lifetime and energy consumption.


Wireless sensor network consists of small sensing nodes having unique characteristics in networks field and energy awareness routing for communication capabilities, computational power consumption. A wireless sensor network (WSN) is a grouping of sensor nodes in a network that perform to support Sensing, Signal processing, Communications and Connectivity for data processing and transmit the information to the destiny (Base station) through neighboring nodes with the help of energy source (batteries). The batteries used in WSN neither to be recharged nor be replace. It is necessary to extend the network lifetime for better performance. Many protocols have their own specific design but major issue is energy awareness. Based on number of nodes present in the field and the speeds at which the multiple parameters like Packet delivery ratio, network lifetime, overhead control are compared. In this paper, the proposed protocol is an efficient energy routing protocol which tries to provide fairness in network. Simulation results through MATLAB are presented.


2016 ◽  
Vol 12 (10) ◽  
pp. 81
Author(s):  
Xiaoqun Mao

<p style="margin: 0in 0in 10pt;"><span style="font-family: Times New Roman; font-size: small;">The relation between the density of a randomly distributed wireless sensor network node and the node’s energy consumption is discussed, and the result shows that the way to extend the network lifetime is to deploy sink nodes in the field with a larger density of sensor nodes. Furthermore, the RDF algorithm a simple, effective and highly efficient strategy for deploying sink nodes, is proposed in this paper based on simulation results. The said algorithm determines the sink node location by giving reference for a large density of sensor nodes. Additionally, the sink node deployment can be efficiently achieved through dividing the region of network and the sink node communication range. Lastly, through simulation verification, the RDF algorithm deployment strategy is further proved valid and effective from the perspective of network lifetime and message delivery rate. </span></p>


Sign in / Sign up

Export Citation Format

Share Document