scholarly journals Performance Analysis of Energy Efficient Distributed Cluster Routing Techniques in Wireless Sensor Networks

Wireless sensor network consists of small sensing nodes having unique characteristics in networks field and energy awareness routing for communication capabilities, computational power consumption. A wireless sensor network (WSN) is a grouping of sensor nodes in a network that perform to support Sensing, Signal processing, Communications and Connectivity for data processing and transmit the information to the destiny (Base station) through neighboring nodes with the help of energy source (batteries). The batteries used in WSN neither to be recharged nor be replace. It is necessary to extend the network lifetime for better performance. Many protocols have their own specific design but major issue is energy awareness. Based on number of nodes present in the field and the speeds at which the multiple parameters like Packet delivery ratio, network lifetime, overhead control are compared. In this paper, the proposed protocol is an efficient energy routing protocol which tries to provide fairness in network. Simulation results through MATLAB are presented.

Wireless Sensor Network (WSN) is developed extremely because of their low installation cost and various applications. WSN has compact and inexpensive sensor nodes for monitoring the physical environment. WSNs are susceptible to many attacks (e.g. malicious nodes) because of its distinct characteristics. The performance of node and network is affected by the malicious nodes. Moreover, the communication among the sensor nodes also required to be secured for preventing the data from the hackers. In this paper, the architecture of the WSN is generated by using the Fuzzy-C-Means clustering (FCM). Then the detection of the malicious nodes is performed by using the Acknowledgement Scheme (AS). This AS is integrated in the Ant Colony Optimization (ACO) based routing for avoiding the malicious nodes while generating the route from the source to the Base Station (BS). Then the Hybrid Encryption Algorithm (HEA) is used for performing the secure data transmission through the network and this proposed method is named as HEA-AS. The performance of the HEA-AS method is evaluated in terms of End to End Delay (EED), network lifetime, throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The proposed HEA-AS method is compared with the existing method called as CTCM to evaluate the effectiveness of the HEA-AS method.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


2021 ◽  
Author(s):  
Ashok T ◽  
Prabakaran R

Abstract Wireless Sensor Network (WSN) is becoming a very important area of research in today’s world and contributes a lot in the field of technology. Reducing energy consumption and improving the network lifetime is the key factor to be considered.Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Also, it comprises various sensor nodes to detect different parameters. Among those non-replaceable batteries plays a greater part. Hence the system with such networks is essential that the sensor nodes consume as little energy as possible.To address the problem, we propose anovel model namely enhanced energy distributed unequal clustering which is mainly utilized for tackling energy consumption issues in multi-hop remote sensor systems. In the proposed method with an area of base station and energy are given significance as clustering parameters. Because of these parameters, diverse nodes are assigned. Here, another methodology has been proposed to enhance the working of EDUC, by electing cluster heads considering several nodes in the neighborhood. The incorporation of the area data for calculation of the opposition radii gives better adjusting of energy in correlation with the current methodology. The technique utilized is of holding similar bunches for a couple of rounds and is successful in decreasing the clustering overhead. The execution of the proposed convention has been assessed under three distinct scenarios and contrasted and existing conventions through reenactments. The outcomes demonstrate that the proposed plan beats the current conventions regarding system lifetime and performances in all the scenarios in terms of delay, energy consumption, packet loss ratio, and packet received ratio.


Author(s):  
P. MANJUNATHA ◽  
A. K. VERMA ◽  
A. SRIVIDYA

Wireless sensor network (WSN) consists of a large number of sensor nodes which are able to sense their environment and communicate with each other using wireless interface. However these sensor nodes are constrained in energy capacity. The lifetimes of sensor node and sensor network mainly depends upon these energy resources. To increase the life time of sensor network, many approaches have been proposed to optimize the energy usage. All these proposed protocols mainly use minimum hop or minimum energy path. Continuously using the shortest path will deplete energy of the nodes at a much faster rate and causes network partition. This paper proposes an energy efficient routing protocol to extend the network lifetime for delay constrained network. Each sensor node selects the optimized path for forwarding packets to the base station based on routing metrics. Proposed studies and simulation results shows that the protocol put forward in the paper can achieve higher network lifetime by striking a balance between the delay and power consumption in comparison to other routing protocols.


Wireless Sensor Network (WSN) is a combination of various small size processing units called sensors. Sensors are deployed over a region to monitor the environment and other happenings. Sensors sense the environmental situations and communicate the sensor data to nearby nodes or base stations. Sensor’s energy keeps on depleting due to their multiple functionalities like sensing, aggregating of received data and communication with neighbor nodes. Energy constraint is one of the vital challenges for sensor nodes as they are majorly operational in unreachable locations with non-replaceable power resources. Various techniques have been implemented to overcome the challenge of limited power resources. Clustering is one of the techniques that facilitate to prolong the network lifetime through effective utilization of energy resources. Numerous clustering protocols have been implemented based on various parameters. Mutual Exclusive Distributive Clustering (MEDC) is one of the distributed clustering protocols that elect the cluster head based on residual energy. Selected cluster head performs the dual functionality i.e. combining the collected data and sending the same to the base station. This paper present the proposed algorithm which employed relay nodes in MEDC to distribute the load of cluster head and the distribution would lead to further enhance the network lifetime of WSN.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


Sign in / Sign up

Export Citation Format

Share Document