Study of Hybrid Method on Beam Crack Evaluation

2012 ◽  
Vol 166-169 ◽  
pp. 1113-1116
Author(s):  
Chuang Du ◽  
Sen Li ◽  
Yan Yan Li ◽  
Zi Tao Du

Based on the numerical calculation and the theoretical formula for crack width,a new semi-numerical and semi-theoretical calculation formula for crack width of beam was given. By using this new formula,finite element method and theoretical method is combined. The method has been validated with the beam, it is indicated that the proposed method can be used to calculate the crack width of beam accurately and efficiently.

2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2021 ◽  
Vol 4 (2) ◽  
pp. 001
Author(s):  
Maurizio Ponte ◽  
◽  
Filippo Catanzariti ◽  
Gloria Campilongo

Computational simulation is widely used in companies to perform analysis and improve the quality of products and projects. Most of these analyses are carried out using software that uses the Finite Element Method, which allows to obtain answers to numerous engineering problems. In this study, two examples of application to the study of tunnels of the Finite Element Method using the Geostru Software "GFAS - Geotechnical F.E.M. Analysis System" are proposed. The case of a tunnel excavated inside a granite rock massif was analyzed, first determining the state of stresses in the cavity contour through a theoretical method and comparing these results with those obtained in the software. Then, by means of finite element modeling, the settlements induced by the excavation were determined. Finally, the problem of tunnel excavation in a viscoplastic rock mass is presented and the authors propose a comparison of the analytical and numerical method.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. E319-E333 ◽  
Author(s):  
Rong Liu ◽  
Rongwen Guo ◽  
Jianxin Liu ◽  
Changying Ma ◽  
Zhenwei Guo

The integral equation method (IEM) and differential equation methods have been widely applied to provide numerical solutions of the electromagnetic (EM) fields caused by inhomogeneity for the controlled-source EM method. IEM has a bounded computational domain and has been well-known for its efficiency, whereas differential equation methods are commonly used for complex geologic models. To use the advantages of the two types of approaches, a hybrid method is developed based on the combination of IEM and the edge-based finite-element method (vector FEM). In the hybrid scheme, Maxwell’s differential equations of the secondary electric fields in the frequency domain are derived for a volume with boundary placed slightly away from the inhomogeneity. The vector FEM is applied to solve Maxwell’s differential equations, and a system of linear equations for the secondary electric fields can be derived by the minimum theorem. The secondary electric fields on the boundary are represented by IEM in terms of the secondary electric fields inside the inhomogeneity. The linear equations from substituting the boundary values into the vector FEM linear equations then can be solved to obtain the secondary electric fields inside the inhomogeneity. The secondary electric fields at receivers are calculated by IEM based on the secondary electric field solutions inside the inhomogeneity. The hybrid algorithm is verified by comparison of simulated results with earlier works on canonical 3D disc models with a high accuracy. Numerical comparisons with two conventional IEMs demonstrate that the hybrid method is more accurate and efficient for high-conductivity contrast media.


2013 ◽  
Vol 477-478 ◽  
pp. 666-670
Author(s):  
Xu Ming Song

Both finite element method and cable numerical calculation have their limitations in calculation of main cable shape for self-anchored suspension bridge. This paper combined the characteristics of the two methods, and worked out the cable shape and internal force of self-anchored suspension bridge though iterative computation. Sanchaji Bridge, a self-anchored suspension bridge in Changsha city, its main cable shape was calculated by this method. Calculating results show that the real shape of main cable fit the results well and we should carefully calculate the length of girder compression which influences the unstressed length of main cable and the position of hangers. The calculating method adopted in Sanchaji Bridge offered a reference for design and construction for similar bridges.


2012 ◽  
Vol 215-216 ◽  
pp. 746-749
Author(s):  
You Ming Wu

The homogeneous solutions of the governing differential equations derived from energy variational method was used as the displacement patterns of finite segment. The stiffness and load matrix are obtained in terms of directed stiffness method and working energy principle. A one dimensional finite element method is presented to calculate the shear lag effects with multi-span continuous curved in engineering for general box girder. In addition, the tests of perspex modeled bridge and numerical calculation of the model tests by proposed method and finite element method are made. The results of model tests and numerical calculation verify perfectly in this paper.


Geophysics ◽  
1984 ◽  
Vol 49 (10) ◽  
pp. 1596-1604 ◽  
Author(s):  
Leung Tsang ◽  
Andrew K. Chan ◽  
Stanley Gianzero

The fundamental resistivity logging problem of a resistivity tool in the presence of both vertical and horizontal boundaries is solved with a hybrid method. The hybrid method combines the mode concept in waveguide theory together with the finite‐element method. In the mathematical formulation, the horizontal boundaries are used to separate the geometry of the problem into different regions. In each region, the waveguide modes are obtained through the solution of an equivalent variational problem. The solutions are calculated by a one‐dimensional finite‐element method. The vertical boundaries are taken into account in these calculations. The orthonormality of modes in each region allows a series representation of the potential in the regions. Boundary conditions at horizontal bed boundaries then couple the modes between different regions and enable the solutions for the potential to be expressed in terms of reflection and transmission matrices of modes. The source excitation determines the amplitudes of the modes. The results of the hybrid method are in excellent agreement with those of the integral transform solution. Numerical results of the apparent resistivity are illustrated as a function of formation properties. The effects of an invaded zone are also examined by considering radial inhomogeneous profiles in the formation. The results of the hybrid method are numerically efficient because it reduces the two‐dimensional finite‐element problem into a one‐dimensional one. It also provides a physical interpretation of the solution in terms of modes.


2020 ◽  
Vol 15 (55) ◽  
pp. 345-359
Author(s):  
Nourddine Hammadi ◽  
Moahmed Mokhtari ◽  
Habib Benzaama ◽  
Kouider Madani ◽  
Abdelkader Brakna ◽  
...  

The pipes, during their service, are subjected to accumulated loads such as internal pressure and that of the soil. The latter considerably accelerate their damage. In this work, the bending moment stress of API 5L X70 category steel elbows under thermo-mechanical behavior and in the presence of pressure were studied. We used FEM (finite element method) through the numerical calculation code ABAQUS and the XFEM technique for structural damage while using solid elements as a structure. Our objective is to evaluate the response and resistance capacity of the steel elbow by its location in the tube–elbow-tube system under a mixed loading of pressure and moment for all scenarios. It is based on a single standardized dimensioning of the elbow (diameter and thickness). The effect of several parameters has been studied such as the type of loading and the pressure levels, which are clearly conditioned by the level of damage. Numerical damage results are presented by moment-rotation curves. They illustrate the variation in damage as a function of these effects which act simultaneously.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Nguyen Thai Chung ◽  
Nguyen Ngoc Thuy ◽  
Duong Thi Ngoc Thu ◽  
Le Hai Chau

In this paper, the authors present results on dynamic behavior analysis of the stiffened composite plate with piezoelectric patches under airflow by finite element method and experimental study. The first-order shear deformation plate theory and nine-noded isoparametric piezoelectric laminated plate finite element with five elastic degrees of freedom at each node and one electric degree of freedom per element per piezoelectric layer were used in the dynamic analysis of plates by finite element method. The modern equipment was used in the dynamic behaviors analysis of plates subjected to airflow load by experimental method. In this study, the results of the theoretical method have been compared with experimental studies.


2020 ◽  
Vol 10 (17) ◽  
pp. 5916
Author(s):  
Jeong Hoon Rhee ◽  
Sang Il Kim ◽  
Yun Mook Lim ◽  
Moon Kyum Kim

Spontaneous ignition caused by material discharge inside a silo causes considerable economic damage. To prevent this, we developed a silo hotspot detector that can be installed inside the silo to monitor the temperature according to the depth of the silo. However, if the silo hotspot detector located inside the silo is destroyed because of the pressure and load generated during material discharge, it could lead to a larger accident. Therefore, the structural safety of the silo hotspot detector should be evaluated based on material discharge; currently, there is no particular method to achieve this. Therefore, in this study, the theoretical formula is obtained through Eurocode, and the pressure and tensile force acting on the silo hotspot detector are predicted through the finite element method (FEM) using the Coupled Eulerian–Lagrangian(CEL) method. These result were verified by comparing the load measurement data acting on the silo hotspot detector when the silo material was discharged. It was confirmed that simulation using the CEL method can sufficiently simulate the behavior of the silo according to material discharge. Additionally, we confirmed that the structural safety of the silo hotspot detector inside the silo can be evaluated through FEM.


Sign in / Sign up

Export Citation Format

Share Document