Study on Grain Size Characteristics and Strength Test of Gravel in Conglomerate Layer of a Coal Mine

2012 ◽  
Vol 170-173 ◽  
pp. 395-398
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Shu Jiang Zhao

The direct roof of B132 coal seam is conglomerate layer in a coal mine, which is cemented with gravels and sandstones and has brought great difficulty for tunnel supporting. It is necessary to study the grain size and strength characteristics of gravel in conglomerate layer for the mining of B132 coal seam safely and efficiently. The statistics and analysis of grain-size characteristics of gravel was carried out in this paper, including of the quantity and volume percent of gravel. Uniaxial compressive strength of gravel was tested with point load method. The test results show that uniaxial compressive strength of gravel is very high, especially the black gravels, whose compressive strength is commonly above 200 MPa and the highest even can reach more than 300 MPa.

2021 ◽  
Vol 9 (1) ◽  
pp. 9-16
Author(s):  
Yan Adriansyah ◽  
Guruh Krisnantara ◽  
Kurniawan Setiadi

Physical and mechanical properties of rock for engineering purposes are indispensable for any civil/construction, mining and other engineering requirment. The results of the uniaxial compressive strength (UCS) test are very much needed in various geotechnical analyzes or engineering, in particular in the mining industry in relation to the calculation of the pit slope design and other mining infrastructure. Rock samples used in this study were obtained from the results of geotechnical drilling (full core drilling). The rock engineering properties test to obtain UCS and PLI values was carried out in the laboratory. Testing the rock hardness index using the point load index (PLI) can be done more quickly, cheaply, practically and can use rock samples with a variety of sample shapes.         The focus and object of the research are mudstone and sandstone units as part of the Lati Formation. These two types of layers are the most dominant rock types as a constituent of the pit slopes in the research area. To ensure that the correlation results are in accordance with the rules of scientific research, the distribution of UCS and PLI data from laboratory test results is verified using a statistical approach / testing. Correlation and analysis between the two rock engineering properties test results are very useful for geotechnical analysis data input. The coefficient or constant values obtained can be used to determine the rock strength values used in various geotechnical analyzes so that the analysis can be carried out more efficiently, effectively and quickly and can support geotechnical engineering work.


2020 ◽  
Vol 26 (8) ◽  
pp. 789-799
Author(s):  
Ali Lakirouhani ◽  
Farhad Asemi ◽  
Afshin Zohdi ◽  
Jurgis Medzvieckas ◽  
Romualdas Kliukas

The purpose of this paper is to investigate the strength, physical and engineering index parameters of selected dolomitic rocks with emphasis on grain size. For this purpose, three groups of dolomite from north western Iran, with the same mineral composition but different grain size, were selected; fine grain, medium grain and coarse grain. Three sets of laboratory experiments are performed on 32 samples: first; petrography tests for determining mineral composition and their percentage, and microstructure of rock containing grain size and grain size distribution, second; experiments to determine the physical properties of the rocks included density, compressional and shear wave velocity, and the third category of experiments included uniaxial compressive strength test, Brazilian tensile strength and point load strength. According to the results; there are significant positive correlation between grain size and uniaxial compressive strength (r = 0.89), point load strength (r = 0.58), Brazilian strength (r = 0.69), and average Young’s modulus (r = 0.64). Also, with increasing grain size, density decreases (r = –0.77). There is strong correlation between compressional wave velocity and shear velocity (r = 0.88). There are also a strong correlation among the uniaxial compressive strength, Brazilian tensile strength and point load strength.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


Author(s):  
Balázs Czinder ◽  
Ákos Török

Abstract Aggregates are necessary materials for the construction industry. Owing to their favourable properties, andesites are frequently used rock materials; hence, the investigation of their mechanical and aggregate properties has great significance. This paper introduces the analyses of 13 Hungarian andesite lithotypes. The samples were collected from six andesite quarries in Hungary. Cylindrical specimens and aggregate samples with 10.0/14.0-mm-sized grains were made from rock blocks. The specimens were tested in dry, water-saturated and freeze–thaw subjected conditions. Bulk density, uniaxial compressive strength, modulus of elasticity, indirect tensile strength and water absorption were measured. The abrasion resistance was tested by micro-Deval tests. The flakiness indexes of the samples were also measured. The data set of the laboratory test results provided input for further, one- and two-variable statistical analyses. According to the test results, there is no significant difference between the strength parameters measured in water-saturated and in freeze–thaw subjected conditions. The correlation and regression analyses revealed relationships between some rock mechanical parameters, as well as between micro-Deval coefficient and uniaxial compressive strength.


Sign in / Sign up

Export Citation Format

Share Document