Experimental Study on Mechanical Performance of Bamboo Fiber Reinforced Concrete

2012 ◽  
Vol 174-177 ◽  
pp. 1219-1222 ◽  
Author(s):  
Xin Zhang ◽  
Jian Yun Pan ◽  
Bo Yang

A series of experiments are carried out to investigate the mechanical performance of bamboo fiber reinforced concrete, including the cubic compressive strength and splitting tensile strength. The experimental results show that bamboo fibers can enhance the cubic compressive strength and remarkably improve the splitting tensile strength of concrete. In addition, the effects of various bamboo fiber content and length on cubic compressive strength and splitting strength are also discussed respectively.

2013 ◽  
Vol 357-360 ◽  
pp. 1045-1048
Author(s):  
Chang Zhang ◽  
Zhen Huang ◽  
Guo Wei Chen

This paper studied the mechanical performance of bamboo fiber reinforced concrete through a series of compression, splitting and flexural tests. The comparative variables are the length and volume ratio of the bamboo fiber. The test results show that concretes splitting tensile property has obvious improvement when bamboo fibers are added, but the enhancement to the compression property and flexural property is not obvious.


2021 ◽  
Vol 16 ◽  
pp. 155892502110603
Author(s):  
Jawad Ahmad ◽  
Fahad Aslam ◽  
Rebeca Martínez-García ◽  
Jesús de Prado-Gil ◽  
Nadeem Abbas ◽  
...  

Fibers are one of the most prevalent methods to enhance the tensile capacity of concrete. Most researchers focus on steel fiber reinforced concrete which is costly and easily corroded. This study aims to examine the performance of polypropylene fiber reinforced concrete through different tests. PPFs were added into concrete blends in a percentage of 1.0%, 2.0%, 3.0%, and 4.0% by weight of cement to offset its objectionable brittle nature and improve its tensile capacity. The fresh property was evaluated through slump cone test and while mechanical strength was evaluated through compressive strength, split tensile strength flexure strength, and flexure cracking behaviors after 7-, 14-, and 28-days curing. Results indicate that slump decrease with the addition of PPFs while fresh density increase up to 2.0% in addition to PPFs and then decreases. Similarly, strength (compressive strength; split tensile strength, and flexure strength) was increased up to 2.0% addition of PPFs and then decrease gradually. It also suggests that Ductility; first crack load, maximum crack width, and load-deflection inter-relations were considerably improved due to incorporations of PPFs.


2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Agustinus Agus Setiawan ◽  
Fredy Jhon Philip ◽  
Eka Permanasari

The objective of this research is to determine the mechanical properties of the waste-plastic-banner-fiber reinforced concrete: compressive strength, splitting tensile strength, rupture modulus and modulus of elasticity. Concrete mixtures with different proportions of waste plastic banner fiber were produced and tested: 0%, 0.25%, 0.5%, 1.0%, 2.0% of waste plastic banner fiber. The tests showed that the addition of fiber by 0.5% from the total concrete volume will increase the splitting tensile strength by 14.28% and produce the modulus of elasticity as high as 23,025 MPa (up to 12% from the normal mix)  and yield the concrete compressive strength of 35.56 MPa (up to 4.95% of the normal mixture). The rupture modulus will increase by 4.11% as the addition of 0.25% of waste plastic banner fiber. 


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chaohua Jiang ◽  
Yizhi Wang ◽  
Wenwen Guo ◽  
Chen Jin ◽  
Min Wei

With great mechanical properties and corrosion resistance, amorphous alloy fiber (AAF) is a highly anticipated material in the fiber-reinforced concrete (FRC) field. In this study, the mechanical properties of AAFRC such as compressive strength, tensile strength, and flexural strength were examined. The comparison and analysis between AAFRC and steel fiber-reinforced concrete (SFRC) were also carried out. The results show that adding fibers significantly improves the concrete strength and toughness index. Compared with plain concrete, the compressive strength, splitting tensile strength, and flexural strength of AAFRC increase by 8.21–16.72%, 10.4–32.8%, and 18.12–45.21%, respectively. Meanwhile, the addition of AAF with a greater tensile strength and larger unit volume quantity improves the splitting tensile strength and flexural strength of concrete more noticeably than that of SF. Adding AAF improves the ductility of concrete more significantly in comparison to the SF. AAFRC shows great interfacial bonding performance as well. A prediction equation for the strength of AAFRC was proposed, which verified good accuracy calibrated based on the test results.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


2010 ◽  
Vol 168-170 ◽  
pp. 2186-2190 ◽  
Author(s):  
Shun Bo Zhao ◽  
Hong Yuan Huo ◽  
Chen Xiao Song ◽  
Li Sha Song

The binary superposition mix design method is constructed to quantitatively calculate the compositions of steel fiber reinforced concrete (SFRC), which brings into sufficient cement paste wrapping steel fibers to strengthen the boundary surfaces of steel fibers with base concrete. The principle of the method is firstly introduced. The experiments were carried out to evaluate the validity of the method. In the experiment, the cubic and axial compressive strength as well as the splitting tensile strength of SFRC affected by the fraction of steel fiber by volume and the average thickness of cement paste wrapping steel fibers were tested. The results are analyzed on the basis of former studies specified in the current technical specification for fiber reinforced concrete structures, which show that the larger strengths especial the splitting tensile strength of SFRC in grade CF50 can be got by the method, but the less splitting tensile strength of SFRC in grade of CF40 should be further studied.


2018 ◽  
Vol 875 ◽  
pp. 174-178
Author(s):  
Bhawat Chaichannawatik ◽  
Athasit Sirisonthi ◽  
Qudeer Hussain ◽  
Panuwat Joyklad

This study presents results of an experimental investigation conducted to investigate the mechanical properties of sisal and glass fiber reinforced concrete. Four basic concrete mixes were considered: 1) Plain concrete (PC) containing ordinary natural aggregates without any fibers, 2) sisal fiber reinforced concrete (SFRC), 3) sisal and glass fiber reinforced concrete (SGFRC), 4, glass fiber reinforced concrete (GFRC). Investigated properties were compressive strength, splitting tensile strength, flexural tensile strength and workability. The results of fiber reinforced concrete mixes were compared with plain concrete to investigate the effect of fibers on the mechanical properties of fiber reinforced concrete. It was determined that addition of different kinds of fibers (natural and synthetic) is very useful to produce concrete. The addition of fibers was resulted into higher compressive strength, splitting and tensile strength. However, the workability of the fiber reinforced concrete was found lower than the plain concrete due to the addition of fibers in the concrete.


Sign in / Sign up

Export Citation Format

Share Document