The Shear Capacity of RC Coupling Beams with Small Span-to-Depth Ratio and Arranged High-Strength Steels

2012 ◽  
Vol 174-177 ◽  
pp. 258-262
Author(s):  
Zhen Bao Li ◽  
De Jing Zhang ◽  
Hua Ma ◽  
Shu Chao Lin ◽  
Wen Jing Wang

The Shear capacities of fourteen coupling beams are analyzed in this research by the finite element numerical simulation method. The coupling beams are designed with small span-to-depth ratios and arranged high strength steel. The results show that the shear capacities of coupling beams accord with the compression strut model. The shear capacities improve obviously through enhancing the diagonal steel bars, but they do not show significant influence through changing the strength of transverse and longitudinal bars. Comparing the results calculated by the formulas shown in the Code for Design of Concrete Structures (GB50010-2010), the results calculated by the finite element method show the gap, and it will be the key issue for further study.

2018 ◽  
Vol 55 (1) ◽  
pp. 1-4
Author(s):  
Elena Felicia Beznea ◽  
Ionel Chirica ◽  
Adrian Presura ◽  
Ionel Iacob

The paper is treating the strength analysis of the main deck structure of an inland navigation catamaran for 30 passengers. The main deck should have high stiffness and high strength to resist to external loading and endure high stresses from combined bending and torsion loads. Different materials for sandwich structure of the deck have been analysed by using the Finite Element Method in order to determine the solution which accomplish better designing criteria regarding allowable stress and deformations and total weight.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2302 ◽  
Author(s):  
Yilin Wang ◽  
Huicheng Geng ◽  
Bin Zhu ◽  
Zijian Wang ◽  
Yisheng Zhang

The application of the quenching and partitioning (Q-P) process on advanced high-strength steels improves part ductility significantly with little decrease in strength. Moreover, the mechanical properties of high-strength steels can be further enhanced by the stepping-quenching-partitioning (S-Q-P) process. In this study, a two-stage quenching and partitioning (two-stage Q-P) process originating from the S-Q-P process of an advanced high-strength steel 30CrMnSi2Nb was analyzed by the simulation method, which consisted of two quenching processes and two partitioning processes. The carbon redistribution, interface migration, and phase transition during the two-stage Q-P process were investigated with different temperatures and partitioning times. The final microstructure of the material formed after the two-stage Q-P process was studied, as well as the volume fraction of the retained austenite. The simulation results indicate that a special microstructure can be obtained by appropriate parameters of the two-stage Q-P process. A mixed microstructure, characterized by alternating distribution of low carbon martensite laths, small-sized low-carbon martensite plates, retained austenite and high-carbon martensite plates, can be obtained. In addition, a peak value of the volume fraction of the stable retained austenite after the final quenching is obtained with proper partitioning time.


2021 ◽  
Vol 25 (01) ◽  
pp. 68-79
Author(s):  
Hind T. Khamies ◽  
◽  
Mu’taz K. Medhlom ◽  

Using FRP bars in the concrete structures under harsh environment produces extension of those service life and dropping of the cost of their lifecycle. This study investigated the influence of slab thickness, material of rebar, arrangement of reinforcement and mass’s dropped on the dynamic behavior of RC slabs by using laboratory experiments. Seven specimens 1550×1550 mm dimension with two thickness 120 and 150mm, single control specimen reinforced with steel bars and six specimens reinforced by CFRP bars were experimentally investigated under sequential dropping-weight ranged from 50 to 150kg, it was a rigid steel projectile, used to apply impacting load. 2.5m was the height of dropping. For estimated penetration depth, three empirical formulas have been used, ACE formulae was preferable predictor than other formulas. Different codes were used to calculation punching shear capacity and critical velocity of perforation and compared the experimental results with these codes. The experimental results showed that the shear properties of slabs have a significant effect in their general behavior. And preferable performance in FRP slabs than slabs reinforced with steel can be achieved which considering high strength and corrosion resistance of this material, which makes it a suitable choice for reinforcing materials.


2014 ◽  
Vol 941-944 ◽  
pp. 2332-2335 ◽  
Author(s):  
Min Zhang ◽  
Chuan Zhen Huang ◽  
Yu Xi Jia ◽  
Jin Long Liu

Considering the extrudate swell, the polymer extrusion process was calculated by the inversed simulation based on the visco-elastic ecology theory. The fluid characteristics of the polymer melt were described by the Phan-Thien and Tanner (PTT) model. The Finite Element Method was used. Based on the simulation data, the extrusion die lips were analyzed. So it is feasible to design the polymer extrusion die lips using inversed simulation method.


2012 ◽  
Vol 271-272 ◽  
pp. 1366-1371
Author(s):  
Qin Xiang Xia ◽  
Teng Xu ◽  
Guang Ming Wei ◽  
Fu Yuan Ye

Multi-position progressive stamping is widely used in industrial fields, such as electronic, automobile and appliance, etc. Finite element numerical simulation has been an effective method to analyze the deformation of multi-position progressive stamping, the progressive die with 13 positions for the high strength steel automotive soleplate component part was manufactured based on the FEA simulation results obtained by multi-position multi-operation modeling method, and the corresponding progressive stamping experiments were carried out. The experimental results of the forward deep drawing of position 3 were further compared with the simulation ones, the results conform well to each other.


Sign in / Sign up

Export Citation Format

Share Document