Treatment of Wastewater Containing Disused Extractant by Advanced Oxidation Processes

2012 ◽  
Vol 178-181 ◽  
pp. 458-462
Author(s):  
Ying Hong Xiang ◽  
Jun Ke Song ◽  
Xiang Dong Li ◽  
Jing Wang

The spent fuel can be treated by solvent extraction. In the process of extraction, the performance of the extraction will be serious deterioration by the effect of radioactive radiation, chemical reaction, light and heat, it will be a new waste and harm human being and pollute environment seriously. In this paper, four different advanced oxidation processes (UV/H2O2,UV/Fenton,O3 and O3/Fenton)were used to treat the wastewater containing extractant. All of these four methods, at presumed conditions, could result in high COD removal efficiencies, and the removal rate of COD reached 80% or above when the wastewater was treated 3 hours.When the wastewater was treated by pretreatment/O3/Fenton, the COD and removal efficiency of the effluent were 247mg/L,94.5% respectively, at the O3 dose of 1000 mg/L with 72 ml/L H2O2.

2018 ◽  
Vol 45 ◽  
pp. 00046
Author(s):  
Jacek Leszczyński ◽  
Jolanta Walery Maria

In this study, the application of ozonation and ozonation with hydrogen peroxide processes for landfill leachate treatment was investigated. The effluents were characterized by COD 710 mgO2/dm3 and BOD5 72 mg O2/dm3. According to the adopted indicators, the determined BOD/COD ratio of 0.1 in raw leachates indicates a stabilized landfill. Ozone was applied at doses of 0.15 - 0.6 gO3/dm3, and hydrogen peroxide at such doses to keep the weight ratios of H2O2/O3 0.4 - 1.6. The maximum COD and UV absorbance removal was respectively 29% and 51% by applying a high ozone dose of 0.6 gO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.3. It has been shown that by using hydrogen peroxide in ozonation, organic compounds expressed as COD can be efficiently removed from the effluents. The best conditions for the H2O2/O3 process were obtained with a H2O2/O3 ratio of 0.8 and ozone dose of 0.6 gO3/dm3. Under these conditions, the removal efficiency of COD was 46%.


2011 ◽  
Vol 255-260 ◽  
pp. 4222-4226
Author(s):  
Li Chin Chuang ◽  
Chin Hsiang Luo ◽  
Sing Wei Huang ◽  
Chun Ju Lin

The removal efficiencies of sulfamerazine (SMR) and sulfamethoxypyridazine (SMP) in aqueous solutions were studied using advanced oxidation technologies. The results show similar removal kinetics for two sulfa pharmaceuticals and that complete removal of all is achieved within 90 min of ozonation at the concentration of O3 (1 mgL-1) without controlling the pH. The rate constants were calculated as 0.0143 and 0.0113 min-1 for SMR and SMP, respectively. The catalysts exhibited a superior removal efficiency of SMP to those of SMR with a TiO2 concentration of 2.0 gL-1. The disappearance of these two sulfa pharmaceuticals follows a pseudo-first-order kinetics according to the Langmuir-Hinshelwood (L-H) model. The rate constants were calculated as 5 × 10-3 and 6 × 10-4 min-1 for SMR and SMP, respectively. Advanced oxidation processes (AOPs), such as O3 and UV/TiO2 processes should be an effective treatment for removing these sulfa pharmaceuticals.


2014 ◽  
Vol 955-959 ◽  
pp. 335-338
Author(s):  
Jun Feng Hua ◽  
Min Dong Zhang ◽  
Mei Huang

Nano-Fe2O3/goldmine complex was obtained by chemical coprecipitation on the surface of goldmine waste-solid. And its application as the heterogeneous catalyst in Fenton-like advanced oxidation processes (AOPs) was discussed for the degradation of dyeing wastewater. It was found that advanced oxidation processes play an important role to the removal of dyeing wastewater. And the best removal rate of 15400mg/L dyeing wastewater reached up to 63.1% with the presence of 50g/L dosage of nano-Fe2O3/goldmine complex and 50mL/L concentration of H2O2at 50°C with pH=3.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Moayede Taie ◽  
Abdolmajid Fadaei ◽  
Mehraban Sadeghi ◽  
Sara Hemati ◽  
Gashtasb Mardani

Nowadays, advanced oxidation processes, particularly photocatalyst process and catalytic ozonation by ZnO nanoparticles, are the most efficient method of eliminating pharmaceuticals. The purpose of this study was to compare the efficiency of ultraviolet/zinc oxide (UV/ZnO) and ozone/zinc oxide (O3/ZnO) techniques as advanced oxidation processes in the removal of trimethoprim (TMP) from aqueous solutions. The process consisted of 0.6 g/L of ozone (O3), pH = 7.5 ± 0.5, TMP with a concentration of 0.5–5 mg/L, ZnO with a dose of 50–500 mg/L, 5–30 min reaction time, and 30–180 min contact time with UV radiation (6 W, 256 nm) in a continuous reactor. The high removal efficiency was achieved after 25 minutes when ZnO is used in 1 mg/L TMP under an operational condition at pH 7.5. When the concentration of the pollutant increased from 0.5 to 1, the average removal efficiency increased from 78% to 94%, and then, it remained almost constant. An increase in the reaction time from 5 to 25 minutes will cause the average elimination to increase from 84% to 94%. The results showed that the efficiency of O3/ZnO process in the removal of TMP was 94%, while the removal efficiency of UV/ZnO process was 91%. The findings exhibited that the kinetic study followed the second-order kinetics, both processes. With regard to the results, the photocatalyst process and catalytic ozonation by ZnO nanoparticles can make acceptable levels for an efficient posttreatment. Finally, this combined system is proven to be a technically effective method for treating antibiotic contaminants.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 955 ◽  
Author(s):  
Edyta Kudlek

This paper compares the removal degrees of selected contaminants of emerging concern in water solutions during advanced oxidation processes (AOPs), such as H2O2, O3, UV, UV/TiO2, UV/H2O2, and UV/O3. The tested micropollutants belong to the following groups: pharmaceuticals, dyes, UV filters, hormones, pesticides, and food additives. The highest removal rate of pharmaceutical compounds was observed during the UV/TiO2 process. The decomposition of hormones in this process exceeded 96% and the concentration of the UV filter dioxybenzone was reduced by 75%. The pesticide triallat and the food additive butylated hydroxytoluene were most effectively oxidized by the UV process and their removal degrees exceeded 90%. The lowest removal degree in all examined processes was observed in the case of caffeine. Toxicological analysis conducted in post-processed water samples indicated the generation of several oxidation by-products with a high toxic potential. The presence of those compounds was confirmed by the GC-MS analysis. The performance of the UV/O3 process leads to the increase of the toxicity of post-processed water solutions, especially solutions containing degradation by-products of carbamazepine, diclofenac sodium salt, acridine, trialatte, triclosan, and β-estradiol were characterized by high toxicity.


2012 ◽  
Vol 583 ◽  
pp. 383-386
Author(s):  
Yan Fei Wei ◽  
Min Dong Zhang ◽  
Mei Huang

Degradation of simulated methyl orange (MO) was studied by combined adsorption treatment and advanced oxidation processes with nano-iron hydroxides/oxides modified slag. The adsorption treatment of nano-iron hydroxides/oxides/slag shows that with the increased of adsorbent from 0.1% to 0.5%, the removal of MO can change from 23.2% to 92.8%. While combination of the adsorption treatment and the advanced oxidation processes exhibits the enhanced disposal ability, in which the removal rate of MO changed from 23.2% to 99.9%.


Author(s):  
Somayeh Rahdar ◽  
Shahin Ahmadi

Background and purpose: The aim of this study was to evaluate the efficiency of zinc oxidenanoparticles (ZnO NPs) in combination with US-H2O2 advanced oxidation processes (AOPs) for the removal of antibiotic amoxicillin (AMO) from aquatic environment.Materials and Methods: This experimental study was conducted in a batch reactor system. The effect of the parameters, such as pH (3-8), the dose of nanoparticles (0.01-0.08 g/L), reaction time (10-100 min), the initial concentration of the AMO (150-250 mg/L) and H2O2 (0.1 – 5Mol/L) on the removal efficiency were studied in ultrasonic reactor. The residual AMO concentrations were measured at 190 nm using a UV/Vis spectrophotometer.Results: The results showed that the US-H2O2 advanced oxidation processes using ZnO NPs can effectively lead to the removal of AMO from the wastewater. The optimal conditions for this process were pH 3, 0.1 M of H2O2 and the dose ZnO NPs 0.05 g/L and time of 60 minutes. In the current study, it was found that the removal efficiency dropped with the increasing concentrations of AMO. Under optimal conditions with 150 mg/L of AMO and contact time of 60 min, the efficiency removal was also equal to 92.47%.Conclusion: The results of this study showed that AOP was a very effective method that can be used for the removal of AMO antibiotic from aqueous solutions.


Author(s):  
Zhangbin Pan ◽  
Xiaokang Zhu ◽  
Guifang Li ◽  
Yongqiang Wang ◽  
Mei Li ◽  
...  

Abstract Halobenzoquinones are disinfection by-products with cytotoxicity, carcinogenicity, and genotoxicity. In this study, we investigated the removal of the HBQ 2,6-dichloro-1,4-benzoquinone (DCBQ) from water using advanced oxidation processes. The removal of DCBQ from water using UV, H2O2, and O3 advanced oxidation processes individually was not ideal with removal rates of 36.1% with a UV dose of 180 mJ/cm2, 32.0% with 2 mg/L H2O2, and 57.9% with 2 mg/L O3. Next, we investigated using the combined UV/H2O2/O3 advanced oxidation process to treat water containing DCBQ. A Box–Behnken design was used to optimize the parameters of the UV/H2O2/O3 process, which gave the following optimum DCBQ removal conditions: UV dose of 180 mJ/cm2, O3 concentration of 0.51 mg/L, and H2O2 concentration of 1.76 mg/L. The DCBQ removal rate under the optimum conditions was 94.3%. We also found that lower humic acid concentrations promoted DCBQ degradation, while higher humic acid concentrations inhibited DCBQ degradation.


2013 ◽  
Vol 746 ◽  
pp. 45-48 ◽  
Author(s):  
Yuan Liu ◽  
Jun Feng Hua ◽  
Min Dong Zhang ◽  
Mei Huang

Phosphorus is one of the main pollutants in glyphosate wastewater. In order to remove the phosphorus in the effluent, two units including CaO precipitation and advanced oxidation processes (AOPs) were used to degrade inorganic phosphate and organic phosphorus in the wastewater. It is found that in the precipitation process the removal rate of TP is 79% when 1g CaO is added to 100ml glyphosate wastewater, while the removal rate of TP is almost 99% when advanced oxidation processes are implemented after the second disposal unit.


Sign in / Sign up

Export Citation Format

Share Document