Relaxed Parallel Scheduling Algorithms Investigation of Support Resource Reservation from Grid

2012 ◽  
Vol 182-183 ◽  
pp. 1849-1853
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

In this paper, the grid computing environment resource reservation problem of using the parallel machine, proposed the relaxed time parallel scheduling models and algorithms support resource reservation. The simulation results of FCFS and EASY backfill algorithms in resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. Show that the relaxation mechanism, the average waiting time and the average bounded slowdown factor of non-reserved jobs down. EASY backfill algorithm which guarantees AR jobs quality of service at the same time, the better the performance improvement of non-AR jobs.

2014 ◽  
Vol 519-520 ◽  
pp. 108-113 ◽  
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

This paper studies resource reservation mechanisms in the strict parallel computing grid,and proposed to support the parallel strict resource reservation request scheduling model and algorithms, FCFS and EASY backfill analysis of two important parallel scheduling algorithm, given four parallel scheduling algorithms supporting resource reservation. Simulation results of four algorithms of resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. The results show that the EASY backfill + firstfit algorithm can ensure QoS of AR jobs while taking into account the performance of good non-AR jobs.


2013 ◽  
Vol 427-429 ◽  
pp. 2519-2522
Author(s):  
Qiong Wang ◽  
Zhao Xia Zhang ◽  
Jia Liu

In LTE-Advanced (LTE-A) system, coordinated multi-point (CoMP) technology can reduce inter-cell interference effectively, and improve the communication quality of the cell edge users. The main purpose of this paper is to optimize the precoding algorithm and enhance the overall cell throughput in LTE-A CoMP downlink. Based on CoMP-JP, we focus on zero-forcing (ZF), block diagonalization (BD) and signal-to-leakage-plus-noise-ratio (SLNR). We propose an improved precoding algorithm (ZF-SLNR) which combines the advantages of ZF and SLNR . Simulation results suggest that ZF-SLNR algorithm provides appreciable performance improvement.


Author(s):  
. Monika ◽  
Pardeep Kumar ◽  
Sanjay Tyagi

In Cloud computing environment QoS i.e. Quality-of-Service and cost is the key element that to be take care of. As, today in the era of big data, the data must be handled properly while satisfying the request. In such case, while handling request of large data or for scientific applications request, flow of information must be sustained. In this paper, a brief introduction of workflow scheduling is given and also a detailed survey of various scheduling algorithms is performed using various parameter.


Author(s):  
Maksim Zhmakin ◽  
Irina Chadyuk ◽  
Aleksey Nadymov

A variant of implementation of a communication system with direct spread spectrum is presented in this article, simulation results are also presented, the main parameters of the system are taken, and conclusions are drawn.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1400
Author(s):  
Muhammad Adnan ◽  
Jawaid Iqbal ◽  
Abdul Waheed ◽  
Noor Ul Amin ◽  
Mahdi Zareei ◽  
...  

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.


2011 ◽  
Vol 233-235 ◽  
pp. 2714-2717
Author(s):  
Xin Gang Ai ◽  
Sheng Li Li ◽  
Dong Wei Zhang ◽  
Nan Lv ◽  
Jun Tao

Huge rectangular ingots becomes crying needs in the condition of lots of heavy plate mills more than 5m have been in operation. In this paper, a special method of wind cooling outside mould has been presented and applied to produce 60t rectangular ingot. Mathematical simulation results tell us that by wind cooling, the solidification time of the 60t ingot can be shortened by 67 minutes, internal soundness can be ensured. The wind cooling process can obviously improve microstructure and preventing skull patch by increasing the thickness of solidified shell. A 60 tons huge rectangular ingot is successfully produced by wind cooling, the surface quality of is very well and the internal soundness should be improved further.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 318
Author(s):  
Merima Kulin ◽  
Tarik Kazaz ◽  
Eli De Poorter ◽  
Ingrid Moerman

This paper presents a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack: PHY, MAC and network. First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning to help non-machine learning experts understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.


2013 ◽  
Vol 805-806 ◽  
pp. 688-692
Author(s):  
Xin Fang ◽  
Xue Liang Huang ◽  
Yan Zhu

Nowadays, there are various devices to detect the power quality of AC grid, where uncertainty of voltage deviation is an important parameter to investigate the power quality. National standards specify several sinusoidal waveforms to detect it, usually implemented into the detecting devices. But these waveforms are not enough and a novel method of detecting measurement uncertainty of voltage deviation is proposed in this paper. A series of detection waveforms are designed using this method. The simulation results verify that the method is available to measure uncertainty of voltage deviation more accurately. Moreover, it can be used to justify whether the basic measurement time interval of voltage deviation meets IEC standard requirements.


Author(s):  
Sven Herold ◽  
William Kaal ◽  
Tobias Melz

In order to realize dielectric elastomer stack actuators suitable for dynamic applications a new actuator design with rigid, perforated electrodes is developed. The low surface resistance of the metal electrodes predestines this concept for dynamic applications where higher currents are present. Detailed numerical analyses are performed to show the potential of this approach, to study the complex material deformation and to optimize the aperture geometry. A multilayer stack actuator is then manufactured and characterized experimentally under various load conditions to gain suitable parameters for a parametrized model. It is subsequently used to attenuate vibrations of a truss structure. By careful adjusting the parameters it functions both as passive absober and as actuator. A comparison of experimental and simulation results proves the high quality of the simulation model. The work shows the great potential of the new design concept for future applications especially in the field of smart structures.


Sign in / Sign up

Export Citation Format

Share Document