Investigation on β-Polypropylene/Talc Composites

2012 ◽  
Vol 182-183 ◽  
pp. 259-264
Author(s):  
Jia Wei Duan ◽  
Qiang Dou

In this study polypropylene (PP) composites containing β-nucleating agent (NT-C) and talc filler were prepared by melt compounding. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical tests. The results indicate that talc suppresses the formation of β phase, but promotes the formation of α phase. The Izod notched impact strength and tensile strength of β-PP/talc composites are superior to those of PP/talc composites, indicating an outstanding balance of stiffness and toughness of β-PP/talc composites.

2012 ◽  
Vol 549 ◽  
pp. 322-326 ◽  
Author(s):  
Yong Chen ◽  
Qiang Dou

The effect of a nucleating agent (NT-C) on the crystallization behavior of poly(lactic acid) (PLA) was studied. The melting and crystallization behavior and spherulitic morphology of the nucleated PLA were investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increase, the spherulitic size decrease for the nucleated PLA. But the crystal structure of the nucleated PLA is not changed.


2003 ◽  
Vol 18 (8) ◽  
pp. 1827-1836 ◽  
Author(s):  
Mirko Schoenitz ◽  
Edward L. Dreizin

Mechanically alloys in the Al–Mg binary system in the range of 5–50 at.% Mg were produced for prospective use as metallic additives for propellants and explosives. Structure and composition of the alloys were characterized by x-ray diffraction microscopy (XRD) and scanning electron microscopy. The mechanical alloys consisted of a supersaturated solid solution of Mg in the α aluminum phase, γ phase (Al12Mg17), and additional amorphous material. The strongest supersaturation of Mg in the α phase (20.8%) was observed for bulk Mg concentrations up to 40%. At 30% Mg, the γ phase formed in quantities detectable by XRD; it became the dominating phase for higher Mg concentrations. No β phase (Al3Mg2) was detected in the mechanical alloys. The observed Al solid solution generally had a lower Mg concentration than the bulk composition. Thermal stability and structural transitions were investigated by differential scanning calorimetry. Several exothermic transitions, attributed to the crystallization of β and γ phases were observed. The present work provides the experimental basis for the development of detailed combustion and ignition models for these novel energetic materials.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Paula Cysne Barbosa ◽  
Michael Stranz ◽  
Frank Katzenberg ◽  
Uwe Köster

AbstractHDPE was analyzed after being submitted to cryogenic mechanical milling (CMM) by X-ray diffraction (WAXS), polarized light microscopy and differential scanning calorimetry (DSC). After CMM, besides the known phase transformation of the orthorhombic PE crystals into the monoclinic modification, slight changes in the melting and crystallization behavior as well as an unexpected increase in crystallinity were observed. The observed results can be explained by assuming a solid/solid phase transition as the responsible mechanism.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Quliang Lu ◽  
Qiang Dou

AbstractN,N’-Diphenyl glutaramide (DPG) is found to be an effective nucleating agent to induce the β-form of iPP. The results of wide angle X-ray diffraction, differential scanning calorimetry and polarized light microscopy indicate that 0.2 wt% of DPG can induce the maximum amount of β-form iPP, and the favorable crystallization temperature for the growth of β-form is 120 ˚C in this study. Analysis of the misfit factor between the cell parameters of DPG and β-iPP shows β-iPP can epitaxially crystallize on the bc face of DPG crystal well.


2005 ◽  
Vol 13 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Minyan Guo ◽  
Xiaodong Zhou ◽  
Gance Dai ◽  
Fuzeng Hu

Melt compounding was employed to prepare polypropylene (PP)/ethylene-octene copolymer (POE)/organic-montmorillonite (OMMT) nanocomposites. Polypropylene grafted with maleic anhydride (MPP) was added as a compatibilising agent. Analyses by wide-angle X-ray diffraction, transmission electron microscopy and scanning electron microscopy indicated that polymer chains intercalated into OMMT and that some of the OMMT delaminated into nano-layers dispersed in the PP matrix. Mechanical tests showed that the addition of POE increases the toughness of PP, but it decreases the stiffness. When OMMT and MPP were added, the toughness of PP increased greatly and the stiffness was not changed profoundly. Differential scanning calorimetry was used to study the melt and crystallization behavior of the composites. The results indicate that OMMT and MPP act as effective nucleating agents.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Yanjie An ◽  
Sihan Wang ◽  
Rui Li ◽  
Dezhu Shi ◽  
Yuxin Gao ◽  
...  

AbstractThe effects of phosphate nucleating agent (NA), carboxylate nucleating agent (MD), rosin type nucleating agent (WA) and sorbitol nucleating agent (NX) on crystallization behavior of isotactic polypropylene were investigated by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results showed that different structure nucleating agents significantly affected the crystallization kinetics, rate and temperature of polypropylene. Among them, half crystallization time of NX nucleating agent was the shortest, which was 53.4 seconds, and the crystallization temperature was the highest, reaching 129.8°C.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


2009 ◽  
Vol 24 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Rabkwan Chuealee ◽  
Timothy S. Wiedmann ◽  
Teerapol Srichana

Sodium cholesteryl carbonate ester (SCC) was synthesized, and its phase behavior was studied. The chemical structure was assessed by solid-state infrared spectroscopy based on vibration analysis. The wave number at 1705 and 1276 cm−1 corresponds to a carbonyl carbonate and O–C–O stretching of SCC, respectively. Molecular structure of SCC was further investigated with 1H and 13C NMR spectroscopy. The chemical shift, for the carbonyl carbonate resonance appeared at 155.5 ppm. A molecular mass of SCC was at m/z of 452. Differential scanning calorimetry (DSC), video-enhanced microscopy (VEM) together with polarized light microscopy, and small-angle x-ray scattering (SAXS) were used to characterize the phase behavior as a function of temperature of SCC. Liquid crystalline phase was formed with SCC. Based on the thermal properties and x-ray diffraction, it appears that SCC forms a structure analogous to the type II monolayer structure observed with cholesterol esters.


Sign in / Sign up

Export Citation Format

Share Document